B.E. FOOD TECHNOLOGY AND BIOCHEMICAL ENGINEERING FIRST YEAR FIRST SEMESTER SUPPLEMENTARY EXAM. 2018

Subject: PHYSICS-I

Time: Three Hours

Full Marks: 100

Answer any five questions

- 1. a) Find the direction cosine of line joining the points (3,2,-4) and (1,-1,2).
 - b) Find the projection of vector 2i 3j + 4k on the vector i + 2j + -2k.
 - c) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at points (2,-1,2).
 - d) Show curl of gradient of any scalar field $\phi(x,y,z)$ is always zero.
 - e) If $A = x^2 z i 2y^3 z^2 j + xy^2 z k$ find ∇A at point (1,-1,1).

3+4+6+3+4

- 2. a) Describe Carnot's reversible cycle. Show that the efficiency of a Carnot's engine working between a source and sink at absolute temperature T_1 and T_2 respectively is $1 T_2/T_1$.
- b) The efficiency of a Carnot's engine is 1/6. If temperature of sink is lowered by 65K, the efficiency becomes 1/3. Find out the temperature of source and sink.
- c) What do you mean by 'entropy' of a system? Draw Carnot's cycle in TS diagram (T along Y-axis and S along X-axis).

12+4+4

- 3. a) An ideal gas obeys the relation PV^{γ} = constant. Identify the process for $\gamma = 0$, 1 and 1.4.
 - b) State and explain the first law of thermodynamics.
- c) One mole of ideal gas expands from a state (V_1, T_1) to a state (V_2, T_2) by quasi stable adiabatic process. Show that the work done by the gas is proportional to $(T_1 T_2)$.
 - d) Write two different forms of statement of second law of thermodynamics.

3+4+8+5

- 4. a) State Biot-Savert law and calculate the magnetic field at an external point due to an infinitely long current carrying wire.
- b) When current flows through two parallel wires, the wires get either repelled or attracted. Explain its reason.
- c) State and explain Ampere's law in magneto-statics. When it is convenient to use Ampere's law over Biot-Savert law. Give an example.
 - d) Show that Ampere's law leads to the same results as obtained in part a) of this question.

(2+6)+3+4+5

- 5. a) State the condition that must be fulfilled to observe an interference pattern.
- b) Show that in Young's experiment fringe width between consecutive bright and dark fringes are constant.
- c) Derive an expression for displacement of fringes if a thin glass plate is introduced in one of the paths of the interfering light rays.
- d) In an Young's double slit experiment interference band are produced on a screen placed at 1.5m from the slits which are separated by a distance of 0.15mm and illuminated by a light of wavelength 450nm. Find the change in fringe width when screen is brought nearer to slits by 50cm.

4+6+5+5

- 6. a) Derive Van der Waal's equation of state for a gas introducing short range interaction terms over the assumption of ideal gas. Draw schematic isotherms for this equation.
- b) Calculate the expressions of critical temperature, critical pressure and critical volume volume for Van der Waal's gas.
 - c) Discuss behavior of gas below critical temperature in unstable region.

5+10+5

- 7. a) Distinguish between Fresnel and Fraunhofer class of diffraction.
- b) Derive an expression of intensity of Fraunhofer diffraction due to single slit. Calculate the direction of minima and maxima of this diffraction pattern.
- c) Fraunhofer diffraction pattern is obtained with a single slit width 0.25mm and light source of wavelength 6000Å. Determine the angle at which first dark bad are formed.

3+12+5

- 8. a) Explain the formation of Newton's ring. Derive an expressions for diameters of dark rings in this experiment. How this experiment can be used to determine wavelength of light?
 - b) What is double refraction? Describe properties of ordinary and extraordinary rays.
- c) What is polarizing angle? The critical angle of light refraction certain medium is 45°. Calculate value of its polarizing angle?

10+5+5