B. ETCE 4TH YEAR 1ST SEMESTER SUPPLEMENTARY EXAMINATION, 2018 MICROWAYE ENGINEERING

Time: 3 Hours Full Marks: 100

Use separate Answer - Script for each Part 50 marks for each part All questions carry the equal marks

PART-I

Answer any Five (5) Questions from the followings: 5×10

- 1. A) Why scattering matrix is used in microwave frequencies. Define the scattering matrix of a two port network.
 - B) The S-parameters for certain two port network is

$$S_{11} = 0.23 \text{-i} 0.16$$
, $S_{12} = S_{21} = 0.44$ and $S_{22} = 0.38 - \text{j} 0.59$

- i) Determine the input reflection coefficient and transducer loss when $Z_G = Z_L = Z_O$
- ii) Repeat for $Z_G = Z_O$ and $Z_L = 3Z_O$
- 2. A) Distinguish between E-plane and H-plane tees and hence discuss the construction and working of an H- plane tee.
- 3. Define the directivity, coupling factor and isolation of a two port directional coupler. Obtain scattering matrix of a two port directional coupler.
- 4. Explain the use of magic—tee for a four port circulator. Write down the scattering matrix of a four port circulator.
- 5. Write down the working principle of a cavity resonator? What are their most desirable properties? A resonant cavity with dimensions a=6 cm, b=5 cm, and d=9 cm is made of copper $\sigma_c=5.8\times10^7$ mhos/m. It is filled with a lossless material $\mu_r=1$ and $\varepsilon_r=3$. Find the resonant frequency f_r for TE_{101} mode.
- 6. Give the comparative study of series and parallel resonant RLC circuit. How the impedance of a parallel resonant RLC circuit is determined?
- 7. What are Ferrites? What properties do they have? Explain the operation of reciprocal phase shifter and give its application.
- 8. What do you meant by waveguide discontinuity? How this discontinuity related with the change of height and width of waveguide? How the resonant frequency is determined?

Ref. No.: Ex/ET/T/414/2018(S)

B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2018

Microwave Engineering

Time: Three hours

Full Marks: 50

Use separate answer scripts for each half.

PART II

Answer Q.1 and any two questions from the rest.

- a) What is TDR? How position of discontinuity can be measured using TDR?
 b) How will you find the impedance of an unknown load using a slotted line?
 c) "Characteristic impedance can be measured using open and short transmission line section." explain.
- 2. a) What is "Reentrant Cavity"? Draw a neat diagram of a coaxial cavity and find its resonant frequency. [2+6]
 - b) Explain velocity modulation in two cavity klystron amplifier using mathematical derivations and drawings. [10]
- 3. a) Explain the bunching process and calculate minimum and maximum electron velocities and bunching distance? [9]
 - b) A two-cavity amplifier klystron has the following parameters:

Beam Voltage: $V_o = 1100 \text{ V}$ Beam Current: $I_o = 26 \text{ mA}$ Frequency: f = 8 GHz

Gap spacing in either cavity: d = 1 mm

Spacing between centers of cavities: L = 4 cm

Effective shunt impedance: $R_{sh} = 40$ k Ohm (excluding beam loading)

Find:

- i) the input voltage for maximum output voltage
- ii) the voltage gain neglecting the beam loading in the output cavity.
- iii) efficiency of the amplifier

[9]

- 4. a) Write the differences between power gain, available gain, the transducer power gain of an amplifier. [3]
 - b) Explain conditional and unconditional stability for a high frequency amplifier? Derive the equations for stability circles. Draw and explain stability circles for conditionally stable devices.

 [2+10+3]
- 5. Write short notes on:

[3x6 = 18]

- a) VSWR measurement techniques
- b) Network Analyzer
- d) Reflex klystron