Ref. No.: Ex/ET/T/425A/2018

B. E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING FOURTH YEAR SECOND SEMESTER EXAMINATION 2018

INDUSTRIAL ELECTRONICS

Time: 3 Hours Full Marks : 100 ANSWER ALL THE FIVE QUESTIONS (All parts of the same question must be answered at ONE Place only) 5+5+10 1 (A) Define Ripple Factor (y) for a FW rectifier. For such rectifier with shunt-C filter, desired $\gamma = 2.97\%$ Determine $C(\mu F)$; given $R=1K\Omega$ (load) & conduction angle $=10^{\circ}$ Derive the relation used OR Explain the operation of a multiphase m- rectifier - what are its advantages 5 + 5 + 10(B) Define Efficiency(%) and Pdc b) Assume $R=1K\Omega$ (load) for a 4- Φ rectifier; determine P_{dc} and E_{dc} 2 (A) a) Explain the characteristics of (i) SCR and (ii) TRIAC 5+5+10 b) A SCR rectifies the AC mains-line voltage to obtain $I_{dc} = 27 \text{ mA } @R_L = 3K\Omega$; Find firing angle (B) a) Explain the principles of Push pull power inverter (PPPI) with a neat transistorized-circuit 10+5+5 b) For the PPPI, calculate (i) Total number of P-turns (ii) Peak Output voltage Given A = 1 sq. inch, B = 10 K.Gauss, f = 3KHz, $N_s = 60$, $V_{cc} = 18$.V.dc 3 (A) a) A d.c. motor-armature controlled industrial Servo system has transfer $F(s) = 5K/\{s^2 + 36s + K\}$ 10+10 For $K_1 = 200$ and $K_2 = 500$; Calculate and Tabulate values of (i) Damping Factor (δ) (ii) Natural frequency - ω_n (rad/s) Comment on relative stability assuming unit step-input. (B) a) Show a simple block diagram of armature-controlled servo-system 8+6+6 b) The following sets of data are given for such system (i) $\delta = 0.5$ $\omega_{\rm n} = 29.6$ (ii) $\delta = 0.1$ $\omega_{\rm n} = 85.2$ Determine Settling time T_s (5% criterion) for the above cases and sketch the pole-locations on the complex s-plane. 4 (A) a) Explain the principle of Resistance Welding with a typical inverse-parallel SCR-control circuit. 10+10 b) The rectifier has a Peak-current rating of 52A, an average current rating of 4.2A and maximum averaging time of 16 sec; device passes rectified half-sine wave for 6 sec to produce a Weld. What is the Maximum safe current (I_m). OR 10+6+4 (B) a) Explain the principle of Induction heating with Steinmetz equation b) Write an equation for the estimate of power (Δp) dissipated as heat on the work-load c) What is Curie Temperature. 10+10 5. a) What is Programmable Logic Controller (PLC). Show a basic PLC structure b) Design a logic-control circuit using four Relays (A,B,C,D) which receive BCD numbers and provide output signal when the present number is 2 or multiples of 2