BETCE Examination, 2018 (UG) (3rd year, 1st semester Supplementary Examination) Subject: IC TECHNOLOGY

Full Marks: 100 Time: Three hours

Answer any **five questions** (twenty marks each)
All the sub-questions should be answered in one place
The answers should be exact and precise
The figures in the margin indicate full marks

	· ·		
Q1	(a) Derive Bragg's diffraction condition using an appropriate diagram.	6	
	(b) Draw the (111) plane and $\overline{[211]}$ direction in a cubic lattice.	4	
	(c) Classify solid solutions with examples.	4	
	(d) What is Gibb's free energy and how does it modify with temperature? Explain with	- 12	
	example.	6	
Q2	(a) What are the different types of defects in a crystal? Explain with appropriate diagram	ns.	
	2+	10	
	(b) Draw the Burgers Vector for edge dislocations.	3	
	(c) Calculate the c/a ratio for a hexagonal closed packed structure.	5	
Q3	(a) Describe the Czochralski method for converting polycrystalline Electronic Grade Silic	on	
	into single crystal ingot.	6	
	(b) What is Float Zone technique? Explain how zone refining crystal purification is carried		
	out.	8	
	(c) Explain the generation of characteristic x-ray with schematic diagram of the x-ray tube.		
•		6	
Q4	(a) Find out the number of atoms per cubic centimetre of Silicon (a=5.431Å)?	3	
	(b) Write the three basic transport equations for the Deal-Grove Model for the oxidati	on of	
	Silicon with an appropriate diagram. Define all parameters.	12	

[Turn over

	(c) What are the different types of charges associated with Si/SiO ₂ system? Explain with	
	diagram	5
Q5	(a) State the two Fick's Laws of Diffusion.	4
	(b) Cite examples for (i) solid source (ii) liquid source and (iii) gas source diffusion system	m
		6
	(c) Explain graphically the diffusion from an (i) infinite source and (ii) limited source on	
	surface. Show the two distribution profiles at a constant temperature, for increasing time	ne.
		8
	(d) Derive the activation energy for intrinsic diffusion.	2
	ж	
Q6	(a) Describe with an appropriate diagram an ion implanter system.	6
	(b) What are the different types of stopping mechanisms? Explain with the energy loss	
	profiles.	2+3
	(c) What are lateral and longitudinal straggles?	4
	(d) How are the damages from ion implantation process mitigated?	5
Q7	(a) Define CVD technique. What are the different susceptor configurations used in CVD?	2
		6
	(b) Describe the criteria for the deposition of epitaxial Silicon on to a Silicon substrate	4
	(c) Describe the reactant-transport steps of atmospheric CVD for film deposition.	4
	(d) What is sputtering? Classify sputtering processes. What are the advantages of magne	etron
	sputtering over the conventional sputtering processes?	+2+2
Q8.	(a) What are the causes of non-conformal step coverage for deposition of SiO_2 films?	4
	(b) Explain the role of PECVD in ensuring conformal step coverage of SiO_2 Film.	4
	(c) Enlist the steps of photolithography.	6
	(d) What are the different exposure systems in photolithography?	6