B. ETCE 3RD YEAR 2ND SEMESTER EXAMINATION-2018

Subject: IC DESIGN

Time: 3 Hours

Full Marks: 100

All parts of the same question must be answered at one place only Model parameters for NMOS and PMOS device

Parameters	NMOS	PMOS
\mathbf{L}_{\min}	180nm	180nm
\mathbf{W}_{\min}	240nm	240nm
V _{th}	0.7V	-0.8V
λ (V-1)	0.1	0.2
μ (cm²/Vs)	350	100
Cox (fF/µm²)	6	6

PART-I

1. Answer any Five Questions:

[Marks: 5×8=40]

- A) What is sub threshold conduction? Why MOS in sub threshold produces higher gain than MOS in saturation (Explain with $log(I_D)-V_{CS}plot$)?
- B) What is channel length modulation effect? How the voltage current characteristics are affected because of this effect?
- C) What is trans-conductance (g_m) of a MOS transistor? Plot g_m - V_{cs} with V_{DS} as a parameter and g_m - V_{DS} with V_{CS} as a parameter.
- D) Draw the ideal characteristics of a CMOS inverter and explain the different parts of the characteristic based on the operation point of those MOSFETs.
- E) How body bias changes the threshold voltage of a MOSFET? Explain with diagram.
- F) Explain why the structures shown below cannot operate as a current source even though the transistors are in saturation.

Figure 1

G) What is delta delay in VHDL? How Transport and inertial delays are described?

[Turn over

PART-II

(Compulsory)

2. Design one cascode current mirror with output resistance not less than 1 M Ω . Find the maximum voltage variation at the output node of the current mirror.

OR

Design one cascode amplifier with resistive load for a voltage gain more than 100. Find the **maximum voltage variation** at the output node of the amplifier. [Marks =20]

PART-III

(Answer any Two)

3. Find the gain expressions of the amplifier circuits shown below.

[Marks: $2 \times 10 = 20$]

A) Consider $\lambda \neq 0$ and $\gamma \neq 0$.

Figure 2

B) Consider $\lambda \neq 0$ and $\gamma = 0$.

Figure 3

4. Find I_x vs V_x plot of the circuit shown below when V_x is varied from 0V to V_{DD} . Specify the voltage ranges corresponding to different transistor operating region. [Marks: 14+6 =20] (Consider supply voltage V_{ad} = 3V, I_t =1 μ A(ideal), V_{DD} =0.7V and $K = \mu C_{ax}W/L = 200 \mu$ A/V² and R_t = 20K Ω)

Figure 4

5. **A)** The circuit shown in Figure 2 has following characteristics: $V_B=2V$, $I_1=1\mu A$ (ideal), $V_{THN}=0.7V$ and $K=\mu C_{ox}W/L=200 \mu A/V^2$ with $V_{BODY}=0V$. If the initial voltage on the capacitor is 3V, **plot** V_x with respect to time. (keep in mind that body to source conduction starts if $V_{SD} \le -0.7V$ because of forward bias between body to source junction) [Marks: 12]

Figure 5

B) Find the Voltage V_x plot of the circuit with respect to time. (Consider zero charge on the capacitor at time t=0). [Marks: 8]

Figure 6