B. ETCE $3^{\text {RD }}$ YEAR $2^{\text {ND }}$ SEMESTER EXAMINATION-2018
 Subject: IC DESIGN
 Time: 3 Hours \quad Full Marks: 100

All parts of the same question must be answered at one place only
Model parameters for NMOS and PMOS device

Parameters	NMOS	PMOS
$\mathbf{L}_{\text {min }}$	180 nm	180 nm
$\mathbf{W}_{\text {min }}$	240 nm	240 nm
V_{th}	0.7 V	-0.8V
$\lambda\left(\mathrm{V}^{-1}\right)$	0.1	0.2
$\mu\left(\mathrm{cm}^{2} / \mathrm{Vs}\right)$	350	100
$\mathrm{Cox}_{\text {(}}\left(\mathrm{FF} / \mu^{\prime} \mathrm{m}^{2}\right)$	6	6

PART-I

1. Answer any Five Questions:
[Marks: $5 \times 8=40$]
A) What is sub threshold conduction? Why MOS in sub threshold produces higher gain than MOS in saturation (Explain with $\left.\log \left(I_{D}\right)-V_{\text {cs }} p l o t\right)$?
B) What is channel length modulation effect? How the voltage current characteristics are affected because of this effect?
C) What is trans-conductance $\left(\mathrm{g}_{\mathrm{m}}\right)$ of a MOS transistor? Plnt $\mathrm{g}_{\mathrm{m}}-\mathrm{V}_{\mathrm{CS}}$ with V_{Ds} as a parameter and $\mathrm{g}_{\mathrm{m}}-\mathrm{V}_{\mathrm{DS}}$ with V_{GS} as a parameter.
D) Draw the ideal characteristics of a CMOS inverter and explain the different parts of the characteristic based on the operation point of those MOSFETs.
E) How body bias changes the threshold voltage of a MOSFET? Explain with diagram.
F) Explain why the structures shown below cannot operate as a current source even though the transistors are in saturation.

Figure 1
G] What is delta delay in VHDL? How Transport and inertial delays are described?

PART-II

(Compulsory)
2. Design one cascode current mirror with output resistance not less than $1 \mathrm{M} \Omega$. Find the maximum voltage variation at the output node of the current mirror.

OR

Design one cascode amplifier with resistive load for a voltage gain more than 100 . Find the maximum voltage variation at the output node of the amplifier.

PART-III
(Answer any Two)
3. Find the gain expressions of the amplifier circuits shown below.
[Marks: $2 \times 10=20$]
A) Consider $\lambda \neq 0$ and $\gamma \neq 0$.

Figure 2
B) Consider $\lambda \neq 0$ and $\gamma=0$.

Figure 3
4. Find I_{x} vs \mathbf{V}_{x} plot of the circuit shown below when V_{x} is varied from 0 V to V_{bv}. Specify the voltage ranges corresponding to different transistor operating region. [Marks: 14+6=20] (Consider supply voltage $V_{a \alpha}=3 V, I_{t}=1 \mu A\left(\right.$ ideal), $V_{\text {Tim }}=0.7 \mathrm{~V}$ and $K=\mu C_{a x} \mathrm{~W} / L=200 \mu \mathrm{~A} / V^{2}$ and R_{1} $=20 \mathrm{~K} \Omega$)

Figure 4
5. A) The circuit shown in Figure 2 has following characteristics: $V_{B}=2 V, I_{1}=1 \mu A$ (ideal), $\mathrm{V}_{\text {Tеی }}=0.7 \mathrm{~V}$ and $\mathrm{K}=\mu \mathrm{C}_{\mathrm{w}} \mathrm{W} / \mathrm{L}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ with $V_{\text {BOоч }}=0 \mathrm{~V}$. If the initial voltage on the capacitor is 3 V , plot V_{x} with respect to time. (keep in mind that body to source conduction starts if $V_{\text {sut }} \leq$ 0.7 V because of forward bias between body to source junction)
[Marks: 12]

Figure 5
B) Find the Voltage V_{x} plot of the circuit with respect to time. (Consider zero charge on the cupacitor at time $t=0$).

Figure 6

