B.E. (ETCE) 2nd YEAR EXAMINATION 2018 (1st Semester Supplementary)

ELECTRO MAGNETIC THEORY

Time: Three hours

Full Marks 100

Answer any *five* questions.

All questions carry equal marks.

Assume appropriate values for all universal physical constants.

I	. (a) (b)	Convert $3a_x + 9a_y + 14a_z$ to cylindrical and spherical coordinates.	12
	(c)	Discuss the physical significance of curl. In which coordinate system the direction of unit vectors never change?	6 2
2.	()	Two point charges in a dielectric medium where ε_r =5.2 interact with a force of 8.6X10 ⁻³ N. What force could be expected if the charges were in free space?	4
	(b)	Define capacitance.	2
	(c) (d)	Obtain the capacitance between two conducting plates of area A separated by a distance d. Determine all components of the electric field of an infinitesimal static electric dipole.	6 8
3.	(a) (b) (c)	Define magnetic potential. Why is it vector while electric potential is a scalar? Find magnetic field intensity at the centre of a square loop of side L carrying a current I. Find the magnetic field for a solid cylindrical conductor of radius r where the current I is uniformly	4 8
		distributed.	8
4.	(a) (b)	Obtain appropriate expression for the density of stored energy in electrostatic field. Find the force on a particle of mass 1.7X10 ⁻²⁷ kg and charge 1.6X10 ⁻¹⁹ C if it enters a field of	12
		B=5mT with an initial speed 83.5km/s.	8
5	. (a) (b) (c)	Write all Maxwell's equations in both integral and differential forms. Given $E=E_m\sin(\omega t-\beta z)a_y$ in free space. Find D , B and H . Sketch E and H at $t=0$.	8
	(d)	Determine the phase velocity for this wave motion.	2
_			··· ·
6.	(a) (b)	State and prove Poynting Theorem. Apply it to calculate the power flow through a coaxial cable.	10 10
7.	(a)	For a good conductor, determine α and β i.e. attenuation and phase constant as also the wave velocity for time harmonic fields and comment on the results.	10
	(b)	Hence discuss the concept of skin depth.	12 8
8.	•	Write short notes on (any two) i) Surface impedance	
		i) Surface impedance ii) Wave equation for partially conducting medium	
		iii) Lorentz gauge condition	
			10X2