[6]

10. Solve the following

$$\frac{dx}{dt} + \frac{dy}{dt} - x + 5y = t^{2}$$
$$\frac{dx}{dt} + 2\frac{dy}{dt} - 2x + 4y = 2t + 1$$

10

11. Solve the following

a)
$$\frac{d^2y}{dx^2} + 4y = 12x^2 - 16x\cos 2x$$

b)
$$\frac{d^2y}{dx^2} + y = x \sin x.$$
 10

12. Solve
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \frac{1}{1+x}$$
 10

13. Find the solution of

a)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 5y = 5\sin 2x + 10x^2 - 3x + 7.$$

b) $\frac{d^2y}{dx^2} + a^2y = \sec ax.$ 10

BACHELOR OF ELECTRONICS & TELE-COMMUNICATION		
Engineering Examination, 2018		
(1st Year, 2ndSemester)		
MATHEMATICS - IV G		
Time : Th	ree hours Full Marks : 100	
(50 marks for each group)		
Use a separate Answer-Script for each group		
	GROUP-A	
	Answer any five questions	
1. a)	Use Cramer's rule to solve the system of equation :	
	x + 2y = 3z + 1	
	$2x + z = x + y \tag{5}$	
	x + 3y = 5	
b)	Let $S = \{(1, 2, 3), (2, 3, 1), (3, 1, 2)\}$. Then show that S	
	is linearly independent and hence S is a basis of \mathbb{R}^3 . 5	
2. a)	Justify with reason whether the following mappings from	
	R^3 to R^3 are linear or not	
	i) $T(z, y, z) = (x + 2y + 3z, y + 2x + 3z, z + 2x + 3y).$	
	ii) $S(z, y, z) = (x + 1, 3y, 4z)$ 5	
b)	Find the matrix representation of T w.r.t. the basis	
	$\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ where $\mathbf{T} \cdot \mathbf{P}^3 \rightarrow \mathbf{P}^3$ is	

defined as
$$T(a, b, c) = (a+c, b+a, a+b+c)$$
.
[Turn over

Ex/ET/Math//T/124/2018

[2]

3. a) Write the following system of equations in the form AX = B and then solve it by finding $A^{-1}B$.

x + z = 0 3x + 4y + 5z = 2 2x + 3y + 4z = 15

- b) Find the rank of the following matrix by reducing it to a row reduced echelon matrix
 - $\mathbf{A} = \begin{pmatrix} 2 & 0 & 4 & 2 \\ 3 & 2 & 6 & 5 \\ 5 & 2 & 10 & 7 \\ 0 & 3 & 2 & 5 \end{pmatrix}$
- 4. a) The matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ relative to the ordered bases {(0, 1, 1), (1, 0, 1), (1, 1, 0)} of \mathbb{R}^3 and {(1, 0), (1, 1)} of \mathbb{R}^2 is

$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$$

Then show that $T(a,b,c) = \left(2a+2b+c, \frac{1}{2}(-a+b+3c)\right)$, where $(a,b,c) \in \mathbb{R}^3$.

GROUP - B

Answer any five questions

7. Obtain power series solution of

in the neighbourhood of x = 0.

 $\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d} \mathrm{x}^2} - \mathrm{x} \mathrm{y} = \mathrm{0}$

10

8. Determine the nature of the point x = 0 o the equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - \alpha^{2})y = 0.$$

Hence obtain a solution of this equation about the point x = 0when α is neither zero nor an integer. 10

9. Consider the equation

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{y}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -a^2x - 2by.$$

Describe the nature and stability properties of the critical point of the above equation for the following cases

i) b = 0 ii) b = a iii) 0 < b < a. 10

[Turn over

b) Compute AB using block multiplication, where

5

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & \cdot & 1 & 0 \\ 0 & 4 & \cdot & 0 & 1 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & 2 & -1 \end{pmatrix}$$

$$(1 \quad 0 \quad \cdot \quad 2)$$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & \cdot & 2 \\ 0 & 1 & \cdot & 3 \\ \cdot & \cdot & \cdot & \cdot \\ 2 & 3 & \cdot & -1 \\ 1 & -2 & \cdot & 1 \end{pmatrix}$$

- [3]
- b) Find the algebraic and geometric multiplicities of eigenvalues of the following matrix
 - $\begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$ 5
- 5. a) Verify Cayley-Hamilton's theorem for the matrix A, where
 - $\mathbf{A} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$

Hence or otherwise find A^{-1} .

5

b) Find the characteristic polynomial for the matrix

$$\mathbf{A} = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix},$$

where a, b, c are non-zero real numbers. What is the minimal polynomial of the same matrix ? What is the minimal polynomial if a = c = 0 but $b \neq 0$. 5

6. a) Let λ be an eigenvalue of a given $n \times n$ matrix A with real entries and $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_kx^k$ be any polynomial where the coefficients are real. Then show that $p(\lambda)$ is an eigenvalue of the matrix p(A). Justify whether the converse holds. 5

[Turn over

b) Compute AB using block multiplication, where

5

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & \cdot & 1 & 0 \\ 0 & 4 & \cdot & 0 & 1 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & 2 & -1 \end{pmatrix}$$

$$(1 \quad 0 \quad \cdot \quad 2)$$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & \cdot & 2 \\ 0 & 1 & \cdot & 3 \\ \cdot & \cdot & \cdot & \cdot \\ 2 & 3 & \cdot & -1 \\ 1 & -2 & \cdot & 1 \end{pmatrix}$$

- [3]
- b) Find the algebraic and geometric multiplicities of eigenvalues of the following matrix
 - $\begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$ 5
- 5. a) Verify Cayley-Hamilton's theorem for the matrix A, where
 - $\mathbf{A} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$

Hence or otherwise find A^{-1} .

5

b) Find the characteristic polynomial for the matrix

$$\mathbf{A} = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix},$$

where a, b, c are non-zero real numbers. What is the minimal polynomial of the same matrix ? What is the minimal polynomial if a = c = 0 but $b \neq 0$. 5

6. a) Let λ be an eigenvalue of a given $n \times n$ matrix A with real entries and $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_kx^k$ be any polynomial where the coefficients are real. Then show that $p(\lambda)$ is an eigenvalue of the matrix p(A). Justify whether the converse holds. 5

[Turn over