10. Solve the following

$$
\begin{align*}
& \frac{\mathrm{dx}}{\mathrm{dt}}+\frac{\mathrm{dy}}{\mathrm{dt}}-\mathrm{x}+5 \mathrm{y}=\mathrm{t}^{2} \\
& \frac{\mathrm{dx}}{\mathrm{dt}}+2 \frac{\mathrm{dy}}{\mathrm{dt}}-2 \mathrm{x}+4 \mathrm{y}=2 \mathrm{t}+1 \tag{10}
\end{align*}
$$

11. Solve the following
a) $\frac{d^{2} y}{d x^{2}}+4 y=12 x^{2}-16 x \cos 2 x$
b) $\frac{d^{2} y}{d x^{2}}+y=x \sin x$.
12. Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\frac{1}{1+x}$
13. Find the solution of
a) $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-5 y=5 \sin 2 x+10 x^{2}-3 x+7$.
b) $\frac{d^{2} y}{d x^{2}}+a^{2} y=\operatorname{Sec} a x$.

Bachelor of Electronics \& Tele-Communication

Engineering Examination, 2018

(1st Year, 2ndSemester)

Mathematics - IV G

Time : Three hours
Full Marks: 100
(50 marks for each group)
Use a separate Answer-Script for each group

GROUP-A

Answer any five questions

1. a) Use Cramer's rule to solve the system of equation:

$$
\begin{align*}
& x+2 y=3 z+1 \\
& 2 x+z=x+y \tag{5}\\
& x+3 y=5
\end{align*}
$$

b) Let $S=\{(1,2,3),(2,3,1),(3,1,2)\}$. Then show that S is linearly independent and hence S is a basis of R^{3}. 5
2. a) Justify with reason whether the following mappings from R^{3} to R^{3} are linear or not
i) $T(z, y, z)=(x+2 y+3 z, y+2 x+3 z, z+2 x+3 y)$.
ii) $\mathrm{S}(\mathrm{z}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+1,3 \mathrm{y}, 4 \mathrm{z})$
b) Find the matrix representation of T w.r.t. the basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ where $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ is defined as $T(a, b, c)=(a+c, b+a, a+b+c)$. 5
[Turn over
3. a) Write the following system of equations in the form $A X=B$ and then solve it by finding $A^{-1} B$.

$$
\begin{array}{r}
x+z=0 \\
3 x+4 y+5 z=2 \tag{5}\\
2 x+3 y+4 z=1
\end{array}
$$

b) Find the rank of the following matrix by reducing it to a row reduced echelon matrix

$$
A=\left(\begin{array}{cccc}
2 & 0 & 4 & 2 \\
3 & 2 & 6 & 5 \\
5 & 2 & 10 & 7 \\
0 & 3 & 2 & 5
\end{array}\right)
$$

4. a) The matrix of a linear mapping $T: R^{3} \rightarrow R^{2}$ relative to the ordered bases $\{(0,1,1),(1,0,1),(1,1,0)\}$ of R^{3} and $\{(1,0),(1,1)\}$ of R^{2} is

$$
\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 0
\end{array}\right)
$$

Then show that $\mathrm{T}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\left(2 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}, \frac{1}{2}(-\mathrm{a}+\mathrm{b}+3 \mathrm{c})\right.$,
where $(a, b, c) \in R^{3}$.

GROUP - B

Answer any five questions
7. Obtain power series solution of

$$
\frac{d^{2} y}{d x^{2}}-x y=0
$$

in the neighbourhood of $\mathrm{x}=0$.
8. Determine the nature of the point $\mathrm{x}=0 \mathrm{o}$ the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\alpha^{2}\right) y=0
$$

Hence obtain a solution of this equation about the point $\mathrm{x}=0$ when α is neither zero nor an integer.
9. Consider the equation

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{y} \\
& \frac{\mathrm{dy}}{\mathrm{dt}}=-\mathrm{a}^{2} \mathrm{x}-2 \mathrm{by}
\end{aligned}
$$

Describe the nature and stability properties of the critical point of the above equation for the following cases
i) $b=0$
ii) $b=a$
iii) $0<b<a$.
b) Compute AB using block multiplication, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
3 & 2 & \cdot & 1 & 0 \\
0 & 4 & \cdot & 0 & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & 2 & -1
\end{array}\right) \\
& \mathbf{B}=\left(\begin{array}{cccc}
1 & 0 & \cdot & 2 \\
0 & 1 & \cdot & 3 \\
\cdot & \cdot & \cdot & \cdot \\
2 & 3 & \cdot & -1 \\
1 & -2 & \cdot & 1
\end{array}\right)
\end{aligned}
$$

b) Find the algebraic and geometric multiplicities of eigenvalues of the following matrix

$$
\left(\begin{array}{ccc}
2 & -2 & 0 \tag{5}\\
-2 & 1 & -2 \\
0 & -2 & 0
\end{array}\right)
$$

5. a) Verify Cayley-Hamilton's theorem for the matrix A, where

$$
A=\left(\begin{array}{lll}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{array}\right)
$$

Hence or otherwise find A^{-1}.
b) Find the characteristic polynomial for the matrix

$$
\mathrm{A}=\left(\begin{array}{lll}
0 & \mathrm{a} & \mathrm{~b} \\
0 & 0 & \mathrm{c} \\
0 & 0 & 0
\end{array}\right),
$$

where a, b, c are non-zero real numbers. What is the minimal polynomial of the same matrix? What is the minimal polynomial if $\mathrm{a}=\mathrm{c}=0$ but $\mathrm{b} \neq 0$.
6. a) Let λ be an eigenvalue of a given n matrix A with real entries and $p(x)=a_{o}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}$ be any polynomial where the coefficients are real. Then show that $p(\lambda)$ is an eigenvalue of the matrix $p(A)$. Justify whether the converse holds.
b) Compute AB using block multiplication, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
3 & 2 & \cdot & 1 & 0 \\
0 & 4 & \cdot & 0 & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & 2 & -1
\end{array}\right) \\
& \mathbf{B}=\left(\begin{array}{cccc}
1 & 0 & \cdot & 2 \\
0 & 1 & \cdot & 3 \\
\cdot & \cdot & \cdot & \cdot \\
2 & 3 & \cdot & -1 \\
1 & -2 & \cdot & 1
\end{array}\right)
\end{aligned}
$$

b) Find the algebraic and geometric multiplicities of eigenvalues of the following matrix

$$
\left(\begin{array}{ccc}
2 & -2 & 0 \tag{5}\\
-2 & 1 & -2 \\
0 & -2 & 0
\end{array}\right)
$$

5. a) Verify Cayley-Hamilton's theorem for the matrix A, where

$$
A=\left(\begin{array}{lll}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{array}\right)
$$

Hence or otherwise find A^{-1}.
b) Find the characteristic polynomial for the matrix

$$
\mathrm{A}=\left(\begin{array}{lll}
0 & \mathrm{a} & \mathrm{~b} \\
0 & 0 & \mathrm{c} \\
0 & 0 & 0
\end{array}\right),
$$

where a, b, c are non-zero real numbers. What is the minimal polynomial of the same matrix? What is the minimal polynomial if $\mathrm{a}=\mathrm{c}=0$ but $\mathrm{b} \neq 0$.
6. a) Let λ be an eigenvalue of a given n matrix A with real entries and $p(x)=a_{o}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}$ be any polynomial where the coefficients are real. Then show that $p(\lambda)$ is an eigenvalue of the matrix $p(A)$. Justify whether the converse holds.

