B. E.T.C.E SUPPLEMENTARY EXAMINATION 2018 $(1^{st} \text{ year}, 1^{st} \text{ Semester})$ PHYSICS IB

Full Marks: 100 Time: Three hours

340000000000000000000000000000000000000	200025	C
Answer	any	nve

An	swei	any nve
l.	(a)	Write down the basic postulates of statistical mechanics.
	(b)	Consider two macroscopic systems A and B are interacting each other? What are the different ways of interaction possible between two systems?
	(c)	If the two systems can interact all possible ways where the composite system is isolated from the rest of the universe. Establish the statistical definition of temperature, pressure and chemical potential. $6+3+3$
2.	(a)	In canonical ensemble, derive the probability P_r that the system is in the energy E_r and hence define the partition function.
	(b)	Calculate the canonical partition function of an ideal classical gas 5
	(c)	Starting from the ideal gas partition function, calculate the average energy and equation of state of of an ideal gas. $5+5$
3.	(a)	Use general expression of entropy to derive the expression for entropy of a canonical ensemble.
	(b)	Consider a system of N spin $\frac{1}{2}$ particles under the influence of an applied enternal magnetic field H . The system is characterized by parameter magnetic moment μ and temperature T . Derive the expression for partition function of this system, hence find the average energy \bar{E} of the system.
	(c)	Calculate the partition function of a one dimensional simple harmonic oscillator 5
4.	(a)	Explain working principle of a Carnot's heat engine for an ideal gas and calculate its efficiency. Show that all reversible engines working between two constant temperatures will have the same efficiency $10 + 2$
	(b)	State Kelvin-Planck and Clausius statements of the second law of thermodynamics.
	(c)	Two Carnot engines A and B are operated in series. A receives heat at 900° K and rejects at T° K. B receives heat rejected by A and in turn rejects at 400° K. Calculate the value of T when (i) the work outputs of A and B are equal and (ii) the efficiencies of A and B are equal.
5.	(a)	What do you mean by International Practical Temperature scale?
		First and second law of thermodynamics together provide the internal energy as $dU = TdS - PdV$. Hence obtain the expression for Gibbs and Helmholtz free energies and also the enthalpy the system

- (c) Derive the Maxwell's thermodynamic relations. Using Maxwell's relation show that the ratio of adiabatic to isothermal elasticity (bulk modulus) is γ , the ratio of two specific heats $(\frac{C_P}{C_V})$. 8+ 4
- 6. (a) If \vec{r} is the position vector of a particle of mass m relative to point O and \vec{F} is the external force on the particle, show that torque or moment of \vec{F} about O is $M = \frac{d\vec{H}}{dt}$, where $\vec{H} = \vec{r} \times m\vec{v}$ and \vec{v} is the velocity of the particle.
 - (b) Find the velocity and acceleration of a particle which moves along the curve x = 2sin3t, y = 2cos3t, z = 8t at any time t > 0. Find the magnitude of the velocity and acceleration.
 - (c) Show that $\nabla r^n = nr^{n-2}\vec{r}$ 5
 - (d) Find the work done in moving a particle from point (1,1) to (2, 8) in the XY plane along the curve $y = x^3$ under the action of a force $\vec{F} = (5xy 6x^2)\hat{i} + (2y 4x)\hat{j}$.
- 7. (a) Define unit vector \hat{r} and $\hat{\theta}$ in plane motion in terms of their cartesian counterparts \hat{i} and \hat{j} . Also show that that $\frac{d\hat{r}}{d\theta} = \hat{\theta}$ and $\frac{d\hat{\theta}}{d\theta} = -\hat{r}$ 4 +
 - (b) Find the expression for velocity and acceleration in plane polar coordinate system. 4+4
 - (c) Give an example of a conservative force field . Show that angular momentum is conserved in a central force field. 1+3