B. E.T.C.E EXAMINATION 2018 (1st year, 1st Semester) PHYSICS IB

Time: Three hours Full Marks: 100

Ar	iswe	r any five
1.	(a)	State zeroth law of thermodynamics. Establish the international scale of temperature? $1 + 4$
	(b)	Consider $dU = TdS - PdV$, where symbols have their usual meaning. Derive the expression for Helmholtz and Gibb's free energies and also the enthalpy the system $2 + 2$
	(c)	Obtain the Maxwell's thermodynamic relations from thermodynamic potentials. Using Maxwell's relation show that the ratio of adiabatic to isobaric volume expansion coefficient is $\frac{1}{1-\gamma}$, where, γ , the ratio of two specific heats $(\frac{C_P}{C_V})$.
2.	(a)	Describe the operation of Carnot's engine using a P-V diagram for an ideal gas and calculate its efficiency. Differentiate between a refrigerator and a heat pump. $10 + 3$
	(b)	Explain how one arrives at the idea of entropy as a state function.
	(c)	A Carnot engine whose low temperature reservoir is at 27°C has an efficiency of 40%. What should be the temperature of high temperature reservoir? What should be the temperature of the latter if the efficiency is to be raised by 60%?
3.	(a)	State the postulates of statistical mechanics.
	(b)	There are 3 spin $\frac{1}{2}$ particles in a lattice each with magnetic moment $\vec{\mu}$, placed in an external magnetic field \vec{B} . Total energy of the system is $-\vec{\mu}.\vec{B}$. Calculate the number of accessible microstates. What is the average value of the magnetic moment of the 1^{st} spin?

(c) Establish the statistical definition of temperature and hence entropy for a mi-

crocanonical ensemble.

- (d) what do you mean by equation of state? Derive the general expression for equation of state for a microcanonical ensemble.
- 4. (a) In a canonical ensemble, calculate the probability P_r that the system is in the energy E_r . Hence define the partition function Z. Derive the expression for average energy \bar{E} and mean square energy fluctuation $(\Delta \bar{E}^2)$ 5+1+2+4
 - (b) Consider $Z = Z(\beta, x)$, where , $\beta = \frac{1}{kT}$ and x is an extensive parameters, such as volume. Use first law of thermodynamic to establish the expression for entropy of a canonical system.

- (c) The two canonical systems A and B have weak interaction. Show that the partition function of a composite system $Z_{AB} = Z_A.Z_B$.
- 5. (a) Calculate the partition function of an ideal monatomic gas. Hence derive the equation of state and obtain the expression for entropy. 6+2+3
 - (b) What is Gibb's paradox? How was the paradox resolved? 2+4
 - (c) A possible energy states of a canonical system are E_1 , E_2 and E_3 . What is the probability that the system will have energy E_1 .
- 6. (a) A Particle moves along a curved path whose parametric equation are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$, where t is the time. Determine its velocity and acceleration at any time and at t=0.
 - (b) $\vec{A} = 5t^2\hat{i} + t\hat{j} t^3\hat{k}$ and $\vec{B} = sint\hat{i} cost\hat{j}$, find $(i)\frac{d}{dt}(\vec{A}.\vec{B}), (ii)\frac{d}{dt}(\vec{A}\times\vec{B}), (iii)\frac{d}{dt}(\vec{A}.\vec{A})$ $2\frac{1}{2} + 3 + 2\frac{1}{2}$
 - (c) Show that $\nabla r^n = nr^{n-2}\vec{r}$, where \vec{r} is the position vector.
 - (d) $\vec{A} = x^2 z \hat{i} 2y^3 z^2 \hat{j} + xy^2 z \hat{k}$. Find $\vec{\nabla} \times \vec{A}$ at point (1,1,1).
- 7. (a) Considering a system of particles and derive the Lagrangian of the system.

 State the boundary conditions and assumptions.
 - (b) Explain De- Alembert´s principle with the mathematical expression. In reference to the above mentioned principle, explain the concept of virtual work. $4+2\frac{1}{2}$
 - (c) State what do you mean by degrees of freedom of a system of particles. A system contains 5 particles with 3 constraints to its motion, Calculate the degrees of freedom of the system. $2+1\frac{1}{2}$
- 8. (a) Consider two heavy weights W_1 and W_2 . They are connected by inextensible string over a fixed smooth circular cylinder, such that they make a certain angle with the vertical. Derive the expression for the condition such that the system does virtual work.
 - (b) $A = xz^3\hat{i} 2x^2yz\hat{j} + yz^4\hat{k} \text{ find } \vec{\nabla} \times (\vec{\nabla} \times \vec{A})$
 - (c) What do you mean by a conservative force field. Show that for a conservative force field the curl of it is zero. 2+4
 - (d) A particle of mass 2 units moves in a force field depending on time t. The force is given by $F = 24t^2\hat{i} + (36t 16)\hat{j} 12t\hat{k}$. Assuming that t = 0 the particle is located at $\vec{r_0} = 3\hat{i} \hat{j} + 4\hat{k}$ and has velocity $\vec{v_0} = 6\hat{i} + 15\hat{j} 8\hat{k}$. Find the velocity and position at any time t.