B.E. Electronics and Tele-Communication Engineering Supplementary Examination 2018

(First Year - First Semester)

PHYSICAL ELECTRONICS

Full Marks: 100 Time: Three hours

The figures in the margin indicate full marks.
(All parts of the same question must be answered together)

Answer **Q.1** and **any eight** from the rest.

1.	Answer all of the following:	20
a)	Names of different cubic lattices are, and	
b)	Crystal structure is described as combination of and	
c)	Most common examples of elemental semiconductors are and	
d)	is a direct band gap semiconductor, while is an indirect band gap semiconductor.	*1
e)	With increase in temperature, the resistance offered by a semiconductor	20
f)	Name of the three valence bands are, and	
g)	Mass of a hole is than that of an electron.	
h)	Statistics suits for distinguishable particles.	
i)	A semiconductor behaves as an insulator at a temperature of	
j)	For a chain of atoms with uniform separation of a , the reduced Brillouin zone extends for k values of to	
k)	For a semiconductor with wider band gap, intrinsic carrier concentration is A material that can behave both as donor and acceptor to a semiconductor is called material.	
2.	Derive the expression of DOS function in a bulk semiconductor, where the <i>E-k</i> relation is assumed to be parabolic. Also write down the general energy dependence of DOS function for systems of different dimensions.	8+2
3.	Write the form of 'Momentum operator' and 'Energy operator', and use them to formulate the general Schroedinger equation. Also derive its time-independent form.	4+6
4.	An electron is confined in an infinite square well. Derive the wave function appropriate for it and find its energy Eigen values.	10
5.	What is Fermi-Dirac distribution function? Establish its variation with energy for both zero and non-zero temperatures. What is meant by Fermi-Dirac tail?	2+6+2

6.a)	Derive Einstein relation and explain its significance.	5
b)	Calculate the diffusion coefficient of electrons at 300K in <i>n</i> -type Si doped with $10^{15} P$ atoms cm ⁻³ . Given that electron mobility is 1300 cm ² /s.	5
7.	Describe how a <i>p</i> -type semiconductor can be converted to an <i>n</i> -type one by compensation doping. Also schematically illustrate the mechanism.	7+3
8.	Formulate the continuity equation for excess carriers and find out their distribution in presence of steady state carrier injection.	6+4
9.	Compare features and origin of acoustic and optic phonons.	10
10.	Draw and explain the temperature dependence of carrier concentration in an n -type semiconductor.	10
11.	Describe the set-up for Hall experiment and the scheme for determining the carrier concentration of majority carriers for a <i>p</i> -type semiconductor.	10