B. ETCE 1st year 1st sem Suppl. 2018 Mathematics-I G

Use seperate answer sheet for each group

Group-A

(Answer any five questions)

Q.1.(i) If
$$y = e^{(m\cos^{-1}x)}$$
 then prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+m^2)y_n = 0$ and find $y_n(0)$.

Q.1.(ii) State Rolle's theorem. Verify Rolle's theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $[0, \pi]$. 5

Q.2.(i) Let g(x) = f(x) + f(1-x) and $f''(x) > 0, \forall x \in (0,1)$. Find the intervals in which g(x) is increasing and decreasing.

Q.2.(ii) Show that
$$\frac{x}{1+x} < \log(1+x) < x \text{ for all } x > 0.$$
 5

Q.3.(i) Examine the extreme value, if $f(x) = x^2(x-1)^3$. 5

Q.3.(ii) Show that of all rectangles of given area, the square has the small-5 est perimeter.

Q.4.(i) Determine
$$\lim_{x\to 0} \frac{1+\sin x-\cos x+\log(1-x)}{x\tan^2 x}$$
. 5 Q.4.(ii) Expand $\log_e(1+x)$ in a finite series in powers of x , with remainder

in Lagrange's form.

Q.5. Find all the asymptotes of the curve $xy^2 - x^2y = a^2(x+y) + b^2$. 10

Q.6.(i) Prove that the sequence $\{x_n\}$ defined by

$$x_n = \frac{3n-1}{n+2}$$

is convergent.

5

5

Q.6.(ii) Examine the convergence of the series

 $\frac{1}{13} + \frac{2}{35} + \frac{3}{57} + \frac{4}{79} + \dots$

[Turn over

Q.7.(i) Let $f_n(x) = x^2 e^{-nx}, x \in [0, \infty)$. Show that $f_n(x)$ is uniformly convergent on $[0, \infty)$.

Q.7.(ii) Prove that the series $\sum \frac{\cos nx}{n(n+1)}$ is uniformly convergent for all real x.

Group-B (Answer any five questions) Use seperate answer sheet for each group

Q.8. Evaluate $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$, $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ and $\lim_{(x,y)\to(0,0)} f(x,y)$, if they exist, for the following functions: 5+5

(i)
$$f(x,y) = \frac{x^3 + y^3}{x - y}, \quad x \neq y$$

 $= 0, \quad x = y$
(ii) $f(x,y) = \frac{xy}{x^2 + y^2} + y \sin \frac{1}{x}, \quad xy \neq 0$
 $= 0, \quad x = 0, \quad y = 0$

Q.9.(i). Show that the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by

$$f(x,y) = \frac{x^2 + 3y^2}{3x^2 + y^2}, (x,y) \neq (0,0)$$

= 0, (x, y) = (0,0)

is not continuous at the origin (0,0). Q.9.(ii). If $u = \tan^{-1} \frac{x^3 + y^3}{x - y}$ then prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} - \sin 2u = 0$$

5

5

Q.10.(i). Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined as

$$f(x,y) = (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, \quad (x,y) \neq (0,0)$$

= 0, \quad (x,y) = (0,0)

Then show that f is differentiable at (0,0). Verify whether f_x or f_y is continuous at (0,0) or not.

Q.10.(ii). Find the directional derivative of the function $f(x, y, z) = \log(x^2 + 2y^2 + z^2)$ at the point (2, 1, 1) in the direction of (-1, 2, 3).

Q.11.(i) State Euler's Theorem and use it to show that if $\sin u = \frac{x^2 + y^2}{x + y}$ then

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u.$$

5

Q.11.(ii) Find the equation of the tangent plane to the surface defined by $f(x,y) = 2\cos(x-y) + 3\sin x$ at the point $(\pi,\pi/2)$.

Q.12. (i) If $x = r \cos \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ then show that

$$\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = r^2 \sin \theta.$$

5

Q.12.(ii) State Weierstrass's M-test. Use it to test the uniform convergence of the series $\sum f_n(x)$, where $f_n(x) = \frac{\sin nx}{x^2 + n^2}$, $x \ge 1$.

Q.13. (i) Find and classify the extreme values (if any) of the function defined as:

$$f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x.$$

Q.13.(ii). Find the shortest distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 = 225, z = 0.$

Q.14. Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition $ax + by + cz = k^2$.