BACHELOR OF ELECTRONICS & TELE-COMMUNICATION ENGINEERING EXAMINATION, 2018

(1st Year, 2nd Semester)

CIRCUIT THEORY

Time: Three hours

Full Marks: 100

(50 marks for each Group) Use a separate Answer-Script for each group

Answer all the parts of a question in the same place All questions carry equal marks Answer any three from Group-A and any two from Group-B

Group-A

1. A voltage wave having the form shown in Fig. 1 is applied across a 4Ω resistance. Find the expression for the current i(t) using Fourier series. Also draw the amplitude and phase spectra.

(8+2)

- 2. a) Calculate the Fourier transform of $g(t) = \exp(-\alpha t)$, where α is a constant and it is either positive or negative.
 - b) In the circuit of Fig. 2, $i(t) = 10 \exp(-t) u(t) A$, where u(t) is a unit step function. Calculate the voltage v(t) using Fourier transform method.

(3+7)

F19.2

3. The waveform of input voltage, $v_1(t)$ is shown in Fig. 3 and it is applied to the initially un-energised RC circuit shown in Fig. 4. Determine the output voltage $v_2(t)$ for $t \ge 0$ using Laplace transform method. Also sketch $v_2(t)$ approximately.

(8+2)

4. The circuit shown in Fig. 5 is initially in the steady state with the switch S open. At t=0, the switch S is closed. Obtain the current through the inductor for t>0 using Laplace transform method. (10)

Group-B

- 5. a) A sinusoidal voltage with variable frequency is applied to a series RLC circuit. Derive the expression for resonant frequency and frequency at which the voltage across the inductance L will be the maximum.
 - b) Calculate the value of R in the circuit shown in Fig. 6 to yield resonance.

$$\frac{3}{3}i_{10}\Omega$$
 = $\frac{1}{3}i_{10}\Omega$ = $\frac{1}{3}i_{1$

- 6. a) For a circuit given in Fig. 7 with R_1 = 6.4 Ω , R_2 = 2.4 Ω , X_{L1} = 4.8 Ω and X_{L2} = 8 Ω , find
 - i) Total conductance and susceptance of the circuit.
 - ii) Total admittance

- iii) Branch currents
- iv) Power factor angle of the circuit.

b) Find voltage v in the circuit shown in Fig. 8.

(6+4)

- 7. a) What do you mean by fundamental cut-set of a graph?
 - b) For a resistive network shown in Fig. 9, draw the directed graph and tree of the network. Also develop the fundamental cut-set matrix and express the branch currents and branch voltages in terms of fundamental cut-set matrix.

(2+1+1+3+3)

[Turn over

Group - B

Answer Question 1 and any FOUR questions from rest

- 1. What is mutual inductance? Describe the effect of mutual inductance in series and parallel combination of inductors.

 [Marks: 4+6=10]
- 2. Find the **h parameters** of the network shown in Figure 1. Comment on **reciprocal** and **symmetrical** property of the network. [Marks: 8+1+1]

3. A) Determine the image impedance Z_{i1} & Z_{i2} of the T network shown below.

[Marks: 5]

B) Find the Norton equivalence of the circuit shown in Figure 3.

[Marks: 5]

4. Find the **equivalent inductance** of the combination of inductors shown below. (Coupling Coefficient = 0.5) [Marks: 10]

5. Determine the current I_L flowing through the 5k resistive branch.

Figure 5

6. Determine the **ABCD matrix** of the network shown in Figure 6. Using those ABCD parameters find the Y **parameters** of the same network. [Marks: 5+5]

7. Obtain the loop current I_1 and I_2 of the network shown in Figure 7. (Mutual inductance M=2H and the RMS value of the applied voltage source is 100V) [Marks: 10]

Figure 7