B. E. E. (EVENING) 5TH YR 1ST SEMESTER SUPPLE EXAMINATION, 2018

SUBJECT: - PROCESS INSTRUMENTATION AND CONTROL

Time: Three hours Full Marks: 100 (50 marks for each part)

Use a separate Answer-Script for each part

PART I

Answer any THREE questions. Two marks are reserved for well organized answers.

- 1. a) Draw the instrumentation diagram for the following process:

 Flow rate in a liquid pipe line is controlled with a local electronic flow controller. The flow signal is obtained from a differential pressure transmitter and a square root extractor. The differential pressure is obtained from an orifice plate in the pipe line.
 - b) Prove that in a digital controller $m_n = k_p \left(1 + \frac{\tau}{T_i}\right) e_n k_p e_{n-1} + m_{n-1}$ where m_n is the controller output sequence and e_n is the error sequence. Show the input-output relation in block diagram form.
- 2. With a neat schematic diagram obtain the transfer function of a simple electronic analog PID controller using two OP-AMPS.
- a) Discuss about the spring and diaphragm pneumatic actuator in 9+7 reverse and direct acting modes.
 - b) What are the basic designs available in rotary valves? List their advantages over conventional globe valves.
- 4. a) Draw the schematic diagram of a pneumatic PID controller and derive its transfer function.
 - b) State advantage of pneumatic controllers over their electronic 10+6 counterpart.
- 5. Write Short notes on any two:
 - a) Self Regulating Process
 - b) Equal Percentage Control Valves.
 - c) Pneumatic Piston Actuator:

8+8

Ref No: Ex/EE/5/T/514/2018(S)(Old) B.ELECTRICAL ENGG. (EVENING) 5^{TI} YEAR 1ST SEMESTER SUPPLE EXAM, 2018 (Supplementary)

SUBJECT: - PROCESS INSTRUMENTATION AND CONTROL

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of Question	PART II	Marks
s		
	Answer any three.	
	Two marks reserved for neatness and well organized answers.	
1.(a)	Derive the mathematical model of non interacting two tank system with linear resistance element.	8
(b)	Outflow (q_0) from a tank is equal to $2h^{3/2}$. Inflow is 'm'. Steady state level in tank is 4m, the area of the tank is $2m^2$. Find $[H(s)/M(s)]$ and characterizing parameters of the transfer function.	8
2(a)	Describe the Process Reaction Curve (PRC) method for tuning of PID controller.	8
(b)	Using direct substitution method, find stability range of $k_{\scriptscriptstyle p}$ for the system having transfer function as .	8
3(a).	Discuss the advantage of applying cascade control in jacketed CSTR.	8
(b)	Consider a closed loop system in which the process comprises of two first order systems connected in series with time constants 1min and ½ min, respectively. Measuring element is also a first order system with time constant of ½ min. Controller is of proportional mode with gain Kp. Draw the process control loop.	8
4.	Write short notes on the following. (i)Feed Forward Control (ii)Ratio Control	16
5.(a)	What is the difference between servo and regulatory system.	4
(b)	Derive the mathematical model of CSTH.	8
	Discuss degree of freedom analysis in mathematical modeling.	
(c)		4