EX/EE/5/T/513A/2018(S) (OLD)

B. ELECTRICAL ENGINEERING EXAMINATION, 2018

(5th Year, 1st Semester, Supple)

ADVANCED COMPUTING TECHNIQUES

Time: Three Hours

Full Marks: 100

(50 marks for each part)

Use a separate answer-script for each part.

PART-I

Answer any three questions.

Two marks are reserved for neat and well organized answers.

- Deduce the FDM equations in a two dimensional system with equal nodal distances.
 - b) Deduce the FDM equations in a two dimensional system with unequal nodal 8 distances.
- 2, a) Explain the method of 'Acceleration of Convergence by relaxation.'
 - b) Find the voltage V₀ as shown in figure below.

- 3. Write a short note on Finite Element Method (FEM).
- 4. Explain back propagation method of ANN clearly indicating the importance of choice of weights in ANN.

[Turn over

16

10

- 5. a) Distinguish between (i) Crisp Set, (ii) Fuzzy Set and (iii) Membership Function 6 with respect to Fuzzy Logic.
 - b) Give the scheme of implementing a Fuzzy Logic Controller in a car. The input parameters can be (a) speed, (b) acceleration and (c) distance to destination. The output will be power flow to the engine.

Ref No:

Ex/EE/5/T/513A/2018(S) (OLD)

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FIFITH YEAR FIRST SEMESTER (OLD) SUPPLEMENTARY EXAM - 2018

SUBJECT: - ADVANCED COMPUTING TECHNIQUES

Full Marks: 100

Time: Three hours (50 marks for this part)

Use a separate Answer-Script for each part

No. of Quest ns		PART -II Answer any Three (Two marks reserved for well organized answers)	Mark
6)		Solve the following LP problem using simplex algorithm. Maximize $z=20x_1+30x_2$ Such that, $x_1+2x_2 \le 10$ $3x_1+2x_2 \le 18$	(16)
7)		Perform Three iterations of the non-linear simplex algorithm to <i>Minimize</i> $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ The initial simplex is formed by the points $A = (4, 4)$, $B = (5, 4)$ and $C = (4, 5)$ and the parameters of the algorithm are, $\alpha = 1.0$, $\beta = 0.5$ and $\gamma = 2.0$, where the notation have their usual meanings. Permissible error for convergence, $\varepsilon = 0.2$.	(16)
8)	a)	Briefly discuss the Marquardt's method for solving the non-linear optimization problems	(8)
	b)	Illustrate the method of "Lagrange multiplier".	(8)
9)		Solve the following integer programming problem using Branch and Bound technique. Solution of the individual LP problems has to be found out using graphical method. Minimize $z = x_1 + 4x_2$ Subject to $2x_1 + x_2 \le 8$	(16)
		$x_1 + 2x_2 \ge 6$ $x_1 x_2 \ge 0 x_1, x_2 \text{ are integer}$	
10)	a)	Briefly discuss simulated annealing.	(8)
	b)	Discuss the Newton's method of solving Non-Linear optimization problems.	(8)