SUBJECT: - ELECTRCAL INSTRUMENTATION

Full Marks 100
Time: Two hours/Three hours/ Four hours/ Six hours
(50 marks for each part)

Use a separate Answer-Script for each part

Bachelor of Electrical Engineering 3rd Yr ${ }^{\text {sT }}$ Semester Examination, 2018

SUBJECT: - ELECTRCAL INSTRUMENTATION

Full, Marks 100
Time: Two hours/Three hours/ Four hours/ Six hours
(50 marks for each part)

| 3. | a)
 Discuss in brief about the working principle of diaphragm type
 capacitive sensor. | |
| :---: | :--- | :--- | :---: |
| 4. | Draw the equivalent circuit of a piezoelectric sensor and derive
 the expression of frequency domain transfer function
 considering voltage as output and displacement as input. | $\mathbf{7 + 8}$ |
| a)Illustrate a scheme for liquid level measurement in a tank by
 ultrasonic sensor following pulse-echo method. | | |
| b)Illustrate a scheme for liquid flow rate measurement for bi-
 directional flow using ultrasonic sensor. | $\mathbf{8 + 7}$ | |
| Write short notes on any three:
 i) Thickness measurement by capacitive sensor.
 iii) Force and Torque measurement.
 iv) Hot wire anemometer.
 v) Electromagnetic type velocity sensor.
 vi) Servo type accelerometer. | $\mathbf{3 X 5}$ | |

B.E.E. (EvENING) 3 ${ }^{\text {RD }}$ YEAR $1^{\text {ST }}$ SEMESTER

SUPPLEMENTARY EXAMINATION, 2018

SUBJECT: - ELECTRICAL INSTRUMENTATION

Full Marks 100
(50 marks for each part)

Use a separate Answer-Script for each part

No. of Questions	PART-II	Marks
Answer any two		
1. a)	Prove that Butterworth poles are situated on an s-plane unit circle.	(10+15=25)
b)	The transfer function of an electrical filter circuit is given as follows:	
	$H(s)=\frac{10}{s^{2}+4549 s+1034}$	
	Realize the above transfer function using an active filter circuit. Find the pass-band gain and cut-off frequency.	
2. a)	What are Rounding off and Truncation type Analog to Digital converters (ADCs)?	6
b)	Explain the operation of successive approximation type ADC for 3 bits.	8
c)	Obtain a 4-bit binary representation of an analog signal value of 10.75 V using successive approximation type ADC. Reference voltage is 12 V . Find out the conversion time in seconds and quantization error in volts. The clock frequency is 1 kHz .	7
d)	What are gain and offset errors of ADC?	4
3. a)	Explain the principle of operation of switched capacitor circuit. What are the main advantages of such circuits in IC technology?	6+4
b)	Derive the transfer function of a band pass filter using switched capacitor representation (Draw necessary circuit realization).	10
c)	Draw the Switched capacitor implementation of the following circuit. Assume switching frequency is 1 kHz .	5
4.	Write notes on any two	(121/2X2=25)
	Operation of a 3 bit unipolar R-2R ladder network based DAC	
b)	Linear model of phase locked loop (PLL)	
c)	State variable Filter	
d)	Storage Oscilloscope	

