Ref No: Ex/EE/5/T/221/2018 B.E. E (PART TIME) 2ND YEAR 2ND SEMESTER EXAM 2018

SUBJECT: - SIGNALS & SYSTEMS

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of Questions	PART-I	Marks
Anestrons	Answer any 4 questions; 2 marks for well organized answers (12X4+2=50))
1.	Derive expressions for Fourier series for the following signal $f(t)$. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12
2.	A signal $x(t)$ is shown below: $ \begin{array}{c cccc} & x(t) \\ \hline & 0 & 3 & 5 \end{array} $	12
2%	Find the even and odd components of $x(t)$.	
3.	Perform graphically the convolution between $x_i(t)$ and $x_2(t)$ as shown in the following figure. $ x_i(t) = x_i(t) $ $ x_$. 12
4.	Plot the single-sided and double-sided frequency spectra of the following signal. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12

Ref No: Ex/EE/5/T/221/2018

B.E. E (PART TIME) 2ND YEAR 2ND SEMESTER EXAM 2018

SUBJECT: - SIGNALS & SYSTEMS

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

Ref No: Ex/EE/5/T/221/2018

B. E. ELECTRICAL ENGG. (PART TIME) 2ND YEAR 2ND SEMESTER -2018

SUBJECT: SIGNALS AND SYSTEMS

Time: Three hours

Full Marks 100 (50 marks for each part)

No. of Questions	Use a separate Answer-Script for each part PART II	Marks
	Answer any three. Two marks reserved for neatness and well organized answers.	
1.(a)	Define transfer function. What is meant by poles & zeros of a	4
(b)	system. A system has following transfer function $G(s) = \frac{100(s+7)(s+16)}{s^5(s+10)(s^2+3s+10)}$	4
	Draw the pole zero map. Comment on type and order of the system.	
(c)	Derive the transfer function for armature controlled DC motor.	8
2. (a)	What is meant by damping? Classify systems based on different values of damping.	3
(b)	Discuss about time response specifications of a system.	6
(c)	A unity feedback control system has an open loop transfer function $G(s) = \frac{5}{s(s+1)}$, $H(s)=1$. Find the closed loop transfer function, rise	7
	time, peak time, settling time, percentage overshoot for a step unit of 5 units.	
3. (a)	Write the differential equation governing the system.	4
(b)	Find the transfer function $\frac{\theta_3(s)}{T(s)}$, where $\theta_3(s)$ is the rotational angle	8
(c)	of the inertial mass J ₃ . Draw the corresponding F-I analogus electrical circuit.	4
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Ref No: Ex/ EE/5/T/221/2018 B. E. ELECTRICAL ENGG. (PART TIME) 2ND YEAR 2ND SEMESTER -2018

SUBJECT: - SIGNALS AND SYSTEMS

Time: Three hours

Full Marks 100 (50 marks for each part)

No. of Questions	Use a separate Answer-Script for each part PART II	Marks
4.(a)	Write the state variable formulations of the electrical system shown. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10
(b)	Write the state variable equations from the diagram shown below. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
5.(a)	Define causal and Non-causal system.	2
(b)	Derive J_{eq} and B_{eq} for and applied torque T_a and load torque T_L for two gears connected together.	8
(c)	Find f(t). Where $F(s) = \frac{s+5}{s^2+6s+16}$. Find the initial and final value of f(t).	6