d) A die is thrown 108 times in succession. Find the expectation and variance of the number of 'six' appeared.

6
8. a) Find the mean and variance of Binomial distribution. 8
b) An integer is chosen at random from the first 100 positive integers. What is the probability that the integer is divisible by 6 or 8 ?

6
c) For any events A and B, show that $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$. 6

Bachelor of Engineering in Electrical

 Engineering (Evening) Examination, 2018
(1st Year, 1st Semester, Old Syllabus)

Mathematics - IVF

Time: Three hours
Full Marks: 100
(Symbols and notations have their usual meanings)
Answer any five questions.

1. a) Find a unit normal vector to the surface $2 x^{2} y+3 y z=4$ at the point $(1,-1,-2)$.
b) Show that
$\vec{\nabla} \times(\overrightarrow{\mathrm{F}} \times \overrightarrow{\mathrm{G}})=\overrightarrow{\mathrm{F}}(\vec{\nabla} \cdot \overrightarrow{\mathrm{G}})-\overrightarrow{\mathrm{G}}(\vec{\nabla} \cdot \overrightarrow{\mathrm{F}})+(\overrightarrow{\mathrm{G}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{F}}-(\overrightarrow{\mathrm{F}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{G}} . \quad 6$
c) Find the maximum value of the directional derivatives of the function $f=x^{2}+y^{2}-z^{2}$ at the point $(1,3,2)$. Find also the direction in which it occurs.
d) Show that the vector $\vec{F}=\sin y \hat{i}+\sin x y^{2} \hat{j}+e^{z} \hat{k}$ is not solenoidal.
2. a) Show that the vector $\overrightarrow{\mathrm{F}}=\mathrm{x}^{2} \hat{\mathrm{i}}+\mathrm{y}^{2} \hat{\mathrm{j}}+\mathrm{z}^{2} \hat{\mathrm{k}}$ can be expressed as the gradient of some scalar point function φ.
b) Verify Green's theorem in plane for $\oint_{C}\left[\left(3 x^{2}-6 y^{2}\right) d x+\right.$ $(y-3 x y) d y]$ where C is the boundary of the region $x=0$, $y=0, x+y=1$.
c) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d s$ where $\vec{F}=2 x^{2} \hat{i}+y \hat{j}-z^{2} \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ between the planes $\mathrm{z}=0$ and $\mathrm{z}=2$ together with the circular ends of these planes.

8
3. a) Show that $f(z)=\frac{x y^{2}(x+i y)}{x^{2}+y^{4}} \quad \begin{aligned} & \text { if } z \neq 0 \\ & 0 \text { if } z=0\end{aligned}$
b) Evaluate $\int_{C} \frac{z^{2}}{(z-2)(z+3)} d z$ where C is the circle $|z|=4$.
c) Find the Laurent's series expansion of the function $\frac{1}{z^{2}-3 z+2}$ valid in the region $1<|z|<2$.
4. a) Find the directional derivative of $\phi=x y^{2} z+4 x^{2} z$ at $(-2,1,2)$ in the direction $(2 \hat{i}+\hat{j}-2 \hat{k})$.
b) Find the equations of the tangent plane and normal line to the surface $\mathrm{xyz}=4$ at the point $\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$.
c) Show that the vector
$\overrightarrow{\mathrm{F}}=\left(\mathrm{y}^{2}+\mathrm{z}^{3}\right) \hat{\mathrm{i}}+(2 x y-5 z) \hat{\mathrm{j}}+\left(3 x z^{2}-5 \mathrm{y}\right) \hat{\mathrm{k}}$ is irrotational.
Show that $\overrightarrow{\mathrm{F}}$ can be expressed as the gradient of some scalar function ϕ.

7
5. a) Using the method of contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+4\right)\left(x^{2}+1\right)} d x$.
b) Evaluate $\int_{c} \frac{\mathrm{zdz}}{\mathrm{z}^{2}-1}$ where C is the positively oriented circle $|z|=2$.
c) Verify Cauchy - Riemann equations for the function $f(z)=z^{3}$.
6. a) State and prove Bay's theorem. 6
b) Find mean and variance of Normal distribution.
c) An integer is chosen at random from the first 100 positive integers. What is the probability that the integer is divisible by 6 or 8 ?
7. a) Define : Random experiment, certain event. 3
b) For any two events A and B, show that
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})+\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})$.
c) Show the function $f(x)$ given by
$f(x)=\left\{\begin{array}{cc}|x|, & -1<x<1 \\ 0 & \text { elsewhere }\end{array}\right.$
is a probability density function. Also find corresponding probability distribution function.

