B.E. ELECTRICAL ENGINEERING (PART TIME) FIRST YEAR SECOND SEMESTER EXAMINATION(OLD), 2018

SUBJECT : CIRCUIT THEORY
Full Marks - 100
Time : Three hours
Use Single Answer-Script

Answer any five questions

No. of question		Marks
1.a)	Write down Initial value and Final value theorem of Laplace Transform.	6
b)	Verify Initial and Final value theorem for (i) $t+\operatorname{Sin} 3 t$ and (ii) $1+e^{-1}(\sin t+\cos t)$.	8
c)	Derive the Laplace transform of a repetitive half-wave rectified sinusoidal voltage waveform. Consider the amplitude and the time period of the rectified voltage as V_{m} and T respectively.	6
2. a)	A series circuit, composed of a 15 ohm resistor and a 100 mH inductor, is connected across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ sinusoidal supply. Assuming, the initial current to be zero, find expression for the instantaneous current in the circuit for $t \geq 0$. Sketch the waveforms of the transient, steady-state and the total current in the circuit.	10
b)	In the following circuit, two switches are closed simultaneously at $t=0$. The voltages across capacitors C_{1} and C_{2} before the switches are closed are 2 V and 5 V respectively. Find the currents $i_{1}(t)$ and $i_{2}(t)$. Also determine the voltages across the capacitors at $\mathrm{t}=0^{+}$.	10
3.a)	State when a two-port network is stated as reciprocal and symmetric.	4
b)	Prove the condition for Reciprocity and Symmetry for a two-port network in terms of $A B C D$ parameters.	8
c)	The open circuit impedance parameters of a certain two port network are $z_{11}=15$ ohm, $z_{12}=5 \mathrm{ohm}, z_{21}=5 \mathrm{ohm}, z_{22}=10 \mathrm{ohm}$. Find the transmission parameters of the network.	8

SUBJECT : CIRCUIT THEORY

Full Marks -100
Time : Three hours

Use Single Answer-Script

Answer any five questions

| 4.a) | Draw a two port network whose y parameters are $y_{11}=-y_{12}=-y_{21}=y_{22}=5$ mho. If
 two such networks are cascaded then determine the y parameter of the overall
 network.
 Obtain the Z -parameters of any two port network in terms of its hybrid parameters.
 Find the short circuit admittance parameters of the T network shown in fig below: | 6 |
| :--- | :--- | :--- | :--- |
| c) | 6 | |

B.E. ELECTRICAL ENGINEERING (PART TIME) FIRST YEAR SECOND SEMESTER EXAMINATION(OLD), 2018

SUBJECT : CIRCUIT THEORY
Full Marks - 100
Time : Three hours
Use Single Answer-Script

Answer any five questions

B.E. ELECTRICAL ENGINEERING (PART TIME) FIRST YEAR SECOND SEMESTER EXAMINATION(OLD), 2018

SUBJECT : CIRCUIT THEORY

Full Marks - 100
Time : Three hours

Use Single Answer-Script

Answer any five questions

