Ref. No. : Ex/EE/5/T/112/2018(S)

B.E ELECTRICAL ENGINEERING (PART TIME) FIRST YEAR FIRST SEMESTER
 SUPPLEMENTARY EXAM 2018
 SUBJECT: - CIRCUIT THEORY

Full Marks: 100
Time: Three hours
(50 marks for this part)
Use a separate Answer-Script for each part

Ref. No. : Ex/EE/5/T/112/2018(S)

| b) | In the circuit shown in Fig Q.5 (b) determine the initial and final
 values of the current through the 1F capacitor. | (8) |
| :--- | :--- | :--- | :--- |

BACHELOR OF ENGINEERING (ELLECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER SUPPLEMENTARY EXAMINATION, 2018

SUBJECT : CIRCUIT THEORY

Time : Three hours
Full Marks - 100
(50 marks for each part)

Use a separate Answer-Script for each part

No. of question	Part II Answer any three questions. Two marks reserved for neatness and well organized answer.	Marks
1.a)	Explain the following with suitable example: (i) Tree (ii) Cut-Set (iii) Incidence Matrix and (iv) Fundamental Tie-Set.	8
b)	Derive equilibrium equations of any electrical network on loop basis using the tie-set matrix of the network.	8
2.a)	Draw the Graph of the network whose node-element incidence matrix is shown below. Select a Tree of the Graph and write down the Cut-Set matrix.	8
b)	Write a short note on dot convention of magnetically coupled circuit.	6
c)	State Superposition Theorem.	2
3.a)	State and explain Norton's Theorem.	4
b)	Find Thevenin's and Norton's equivalent circuits through terminals $\mathrm{a} \& \mathrm{~b}$ for the circuit shown in figure :	8

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER SUPPLEMENTARY EXAMIINATION, 2018

SUBJECT : CIRCUIT THEORY

Time : Three hours
Full Marks - 100 (50 marks for each part)

Use a separate Answer-Script for each part

c)	Two coils with self inductance of 2 H and 5 H are mutually coupled, the coefficient of coupling being 0.5 . The coils are connected in series and produce flux in the opposite directions in the common magnetic circuit. Find equivalent inductance of the combination.
Find V_{0} for the circuit shown below:	
Find the no of possible trees of the given graph. Also write down the reduced incidence matrix,	
tie-set matrix \& cut-set matrix of the graph shown below:	
b)	
equation on loop basis. Calculate the	
network.	

