B.E. ELECTRICAL ENGG (PART TIME) 1ST YEAR 2ND SEMESTER EXAM 2018

SUBJECT: - PRINCIPLES OF ELECTRICAL ENGINEERING-II

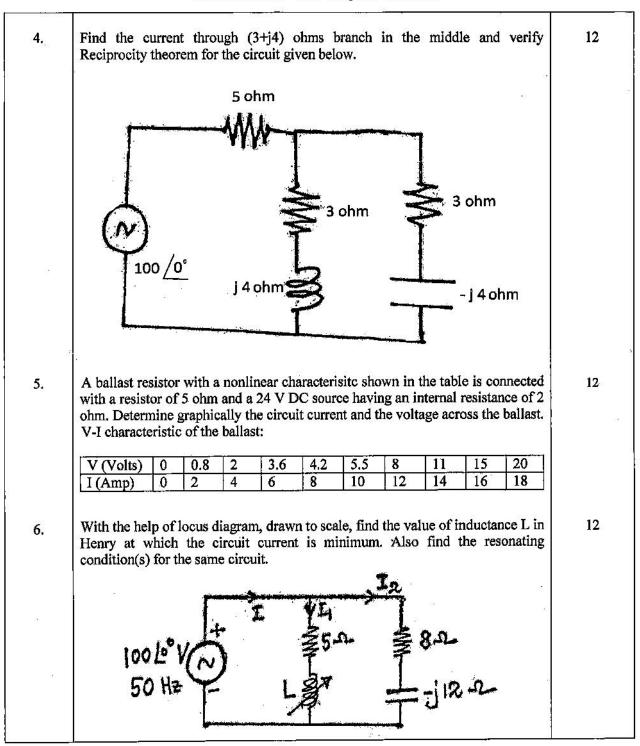
Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of	PART-I	Marks
Questions Answer any four, 2 marks for well organized answers (12 x 4 + 2 = 50)		
1.	Find the current through the load of 20 ohm in the circuit shown below. Solov O'2H Solov Solov Solov Solov Solov Research	12
2. a)	Put dots to indicate polarities of the 3 magnetically coupied coils shown in the figure given below.	4
b)	Draw and explain the phasor diagram of a single phase transformer with inductive load.	8
3.	In the network shown below, the 10 ohm resistor is changed to 5 ohm. Use Compensation Theorem to find the change in current flowing through the resistor. 50 45 V j 3 ohm	12

Ref No: Ex/EE/5/T/121/2018


B.E. ELECTRICAL ENGG (PART TIME) 1ST YEAR 2ND SEMESTER EXAM 2018

SUBJECT: - PRINCIPLES OF ELECTRICAL ENGINEERING-II

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

B.E ELECTRICAL ENGINEERING (PART TIME) EXAMINATION, 2018

(1st Year, 2nd Semester)

PRINCIPLES OF ELECTRICAL ENGINEERING -II

Time: Three Hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-script for each Part

PART-II

Answer any three questions

(Two marks are reserved for neatness and well organized answers)

- a) Calculate the active and reactive current components in each phase of a star-connected 10kV, three-phase alternator supplying 5000kW at a power-factor 0.8(lag). If the total current remains the same when the load power-factor is raised to 0.9(lag), find the new power output.
 - b) Prove that copper requirement for three phase system is 0.75 times that required in single phase system.
- 2. a) A three-phase, 400V, 4-wire system has the following load impedances $Z_A = 10 \angle -60^{\circ} \Omega$, $Z_B = 5 \angle 0^{\circ} \Omega$ and $Z_C = 10 \angle 60^{\circ} \Omega$. Calculate the line currents and the neutral current and the power drawn by each load when phase sequence is (i) ABC and (ii) ACB.
 - b) A 3-wire, three-phase system of 400V has the following impedances: $Z_A=(20-j20)\Omega$, $Z_B=(50+j0)\Omega$ and $Z_C=(30+j52)\Omega$. Calculate the phase currents Of the load.
- 3. a) Explain when one wattmeter shows zero reading while measuring three-phase power by two wattmeters. Draw the necessary circuit and phasor diagrams. 4+2+2
 - b) The power input to a 2000 V, three-phase motor is measured by two wattmeters which read 300 kW and 100 kW respectively. Calculate i) the power input, ii) the power-factor and iii) the line current.
- 4. Write short notes on *any two* of the following:

 $8 \times 2 = 16$

- (i) Positive sequence system.
- (ii) Millman's Theorem.
- (iii) Phase sequence.