BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FIRST YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2018

PRIME MOVERS FOR ELECTRICAL SYSTEMS

Time: Three hours

Use Separate answer script for *Group A* and *Group B*

Marks: 100

Different parts of the same question should be <u>answered together</u>. All symbols carry their usual meanings unless otherwise mentioned. Assume any relevant data if necessary.

Group A (Answer Any THREE and Question 1 is compulsory)

۱.	Answer the following questions (any two) $5 \times 2 = 10$	
	a) Classify steam turbine based on the principle of working.	
	b) How do you improve the cycle efficiency of a simple Brayton cycle?	
	c) What do you mean by the following terms related to an IC engine?	
	(i)Clearance volume, (ii) Stroke volume, (iii) IP (iv) Mechanical efficiency	10
2.	a) Derive an expression of optimum pressure ratio for an ideal simple Brayton cycle.	10
	b) In a gas turbine plant working on Brayton cycle, air is drawn in at 1 bar and 25°C and	
	is compressed to 8bar. Calculate the thermal efficiency and the back work ratio of the	
	ideal pressure cycle when the maximum cycle temperature is limited to 850°C.	10
3.	a) Explain if brief working principle of a 4-stroke SI engine.	10
	b) A four-stroke engine delivers 35 kW with a mechanical efficiency of 80%. The fuel	
	consumption of the engine is 0.4 kg/kW-hr and the air-fuel ratio is 14:1. The heating	
	value of the fuel is 42000kJ/kg. Find (i) the indicated power, (ii) the friction power,	94 (3
	(iii) the brake thermal efficiency, and (iv) the fuel consumption per hour.	10
4.	a) Draw the longitudinal sectional view of a simple impulse turbine with development of	
	nozzles and blades. Also show pressure and velocity distributions.	8
	b) An impulse steam turbine has nozzles inclined at 200 to the plane of rotation. The inlet	
	and outlet angles of the moving blades are equal, the blades friction factor is 0.8 and	
	the mean diameter of the blades is 0.6 m. The steam leaves the nozzle with a velocity	
	of 700 m/s. Determine (a) the optimum value of the blade angles, (b) the steam flow	
	rate required to produce 20kW and (c) the blade efficiency. Assume the rotational	12
	speed of the wheel 3000rpm	

Group B

(Answer Any THREE and Question 5 is compulsory)

5.	Write short note on (any TWO) $5 \times 2 = 10$	10
	a) Classification of Wind Turbine	
	b) Pelton Wheel	
	c) Moody's diagram	N
6.	a) State and explain the Newton's Law of viscosity.	6
	b) A 90 mm diameter cylinder moves at 2 m/s through a cylinder of 90.5 mm internal	8
	diameter. The annular space between the cylinder is filled with oil having a dynamic	
	viscosity of 0.1 Pa.s. Determine the power required in overcoming viscous friction.	
	c) The velocity vector in a fluid flow is given by $V = 2x^2\hat{i} - 5x^2y\hat{j} + 4zt\hat{k}$. Find the velocity	
	and acceleration of a fluid particle at (1,2,1) at time t=1	6
7.	a) Derive the Euler equation of motion.	8
	b) An orifice meter of 10 cm diameter is used to measure the flow of water through a	6
	pipe of diameter 20 cm. If mercury monometer shows a reading of 20 cm, determine	
	the rate of flow. Assume Cd = 0.96, Cc = 0.8.	,
	c) Determine the pressure drop and the wall shear stress at the pipe of length 200m filled	
	with oil of viscosity 0.1 Pa.s. and density 700 kg/m ³ flowing through a circular pipe of	6
	diameter 60 mm. The discharge through the pipe is 10 litres/s.	
8.	a) What do you mean by reaction turbine? Draw a schematic layout of hydroelectric	10
	power plant with its major components.	
	b) An impulse turbine rotates at 1000 rpm under a head of 300 m. Calculate the power	10
	available at the inlet and the hydraulic efficiency when discharge through the turbine is	
	600 litre per second and jet deflected at 170 degree. Assume speed ratio =0.45, Cv=	
	0.96 and K=0.9	