B.E. ELECTRICAL ENGINEERING (PART TIME) FIRST YEAR SECOND SEMESTER EXAMINATION(OLD), 2018

SUBJECT: CIRCUIT THEORY

Time: Three hours

Full Marks -100

Use Single Answer-Script

No. of question		Marks
1.a)	Write down Initial value and Final value theorem of Laplace Transform.	6
b)	Verify Initial and Final value theorem for (i) $t + \sin 3t$ and (ii) $1 + e^{-t}(\sin t + \cos t)$.	8
c)	Derive the Laplace transform of a repetitive half-wave rectified sinusoidal voltage waveform. Consider the amplitude and the time period of the rectified voltage as V _m and T respectively.	
2. a)	A series circuit, composed of a 15 ohm resistor and a 100 mH inductor, is connected across a 100 V, 50 Hz sinusoidal supply. Assuming, the initial current to be zero, find expression for the instantaneous current in the circuit for $t \ge 0$. Sketch the waveforms of the transient, steady-state and the total current in the circuit.	10
b)	In the following circuit, two switches are closed simultaneously at $t=0$. The voltages across capacitors C_1 and C_2 before the switches are closed are 2V and 5 V respectively. Find the currents $i_1(t)$ and $i_2(t)$. Also determine the voltages across the capacitors at $t=0^+$. $C_2=1 \text{ F}$ $C_2=1 \text{ F}$ $C_1=1 \text{ F}$	10
3.a)	State when a two-port network is stated as reciprocal and symmetric.	4
b)	Prove the condition for Reciprocity and Symmetry for a two-port network in terms of ABCD parameters.	8
c)	The open circuit impedance parameters of a certain two port network are $z_{11} = 15$ ohm, $z_{12} = 5$ ohm, $z_{21} = 5$ ohm, $z_{22} = 10$ ohm. Find the transmission parameters of the network.	8

Ref. No. Ex/EE/5/T/121/2018(Old)

B.E. ELECTRICAL ENGINEERING (PART TIME) FIRST YEAR SECOND SEMESTER EXAMINATION(OLD), $2018\,$

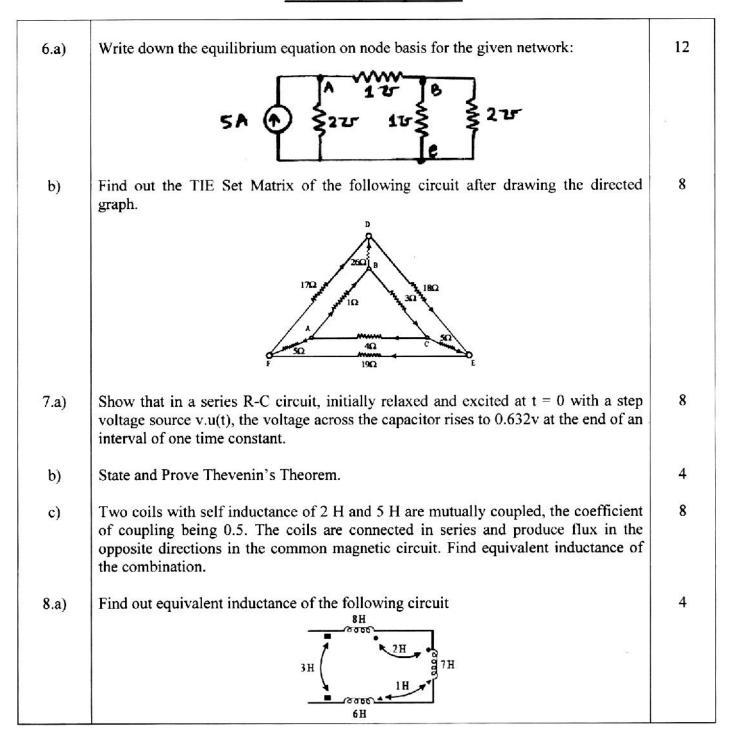
SUBJECT: CIRCUIT THEORY

Full Marks -100

Time: Three hours

Use Single Answer-Script

4.a)	Draw a two port network whose y parameters are $y_{11} = -y_{12} = -y_{21} = y_{22} = 5$ mho. If two such networks are cascaded then determine the y parameter of the overall network.	6
b)	Obtain the Z-parameters of any two port network in terms of its hybrid parameters.	8
c)	Find the short circuit admittance parameters of the T network shown in fig below:	6
	1 20Ω 2 2 10Ω 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Ti Ti
5.a)	Define tree, twig, link and co-tree of a graph of any electrical network with suitable example.	8
b)	Find the no. of possible trees of the given graph. Also write down the reduced incidence matrix, tie-set matrix & cut-set matrix of this graph.	8
c)	Determine the driving point impedance and transfer admittance of the given network.	4

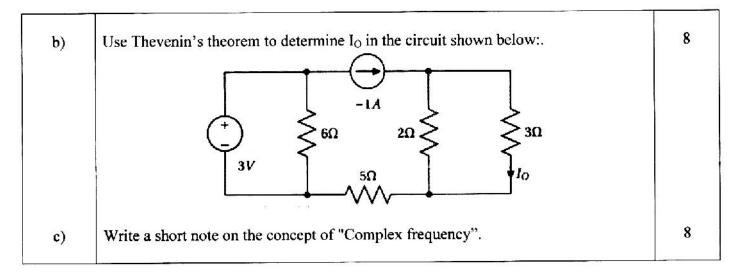

B.E. ELECTRICAL ENGINEERING (PART TIME) FIRST YEAR SECOND SEMESTER EXAMINATION(OLD), 2018

SUBJECT: CIRCUIT THEORY

Full Marks -100

Time: Three hours

Use Single Answer-Script


B.E. ELECTRICAL ENGINEERING (PART TIME) FIRST YEAR SECOND SEMESTER EXAMINATION(OLD), 2018

SUBJECT: CIRCUIT THEORY

Full Marks -100

Time: Three hours

Use Single Answer-Script

