Bachelor of Electrical Engineering Examination, 2018

$\left(4^{\text {lh }}\right.$ Year, 2nd Semester,
Reliability Engineering

Time: Three Hours
Full Marks: 100
(50 marks for each part)
Use a separate Answer-script for each Part
PART - I
Answer any three guestions
(Two marks are reservelfor neatness and well organized answers)

1. For the system shown in Fig. 1, the main feeders of section 1, 2 and 3 have failure rate of 0.2 failures $/ \mathrm{yr}$ and the lateral distributions have a failure rate of 0.3 failure s / yr. Other reliability parameters are given in Table-1.The number of customers and average load connected to load points A, B and C are $800,9000 \mathrm{MW}, 800,1500 \mathrm{MW}$ and $700,2000 \mathrm{MW}$ respectively. Calculate the failure rate, outage time, unavailability of each load point and also the load and energy oriented indices.

Fig. 1
Table-1

Component	r (hrs)	$\mathrm{s}(\mathrm{hrs})$
Section 1	1.5	0.20
2	2.0	0.30
3	2.5	0.30
Distributor	2.0	0.20
a	3.0	0.20
b	1.5	0.30
c		

2. a) Define the following terms:
i) Active failure ii) Passive failure and iii) Stuck condition of breaker
b) For the system shown in Fig. 2, compute the ayerage repair time, annual outage duration and failure rate of load point L1 and L2 with the following condition.
i) isolation of failed component not possible
ii) isolation of failed component is possible

Considering the failure rate of 0.2 failure $/ \mathrm{yr}$, repair time of 60 hours and switching time of 1.5 hours for each transformer.

Fig. 2
3.a) A system contains four 70 MW units and one 100 MW unit each having F.O.R. $=0.03$. Construct the capacity outage probability table rounded off to 75 MW steps.
b) Explain with the help of suitable example why 'loss of largest unit method' is preferred to 'percentage reserve method' while computing risks in two almost similar systems.
4. a) A generating system contains three 25 MW generating units each with 4% F.O.R. and one 30 MW unit with 5% F.O.R. If the peak load for a 100 day period is 75 MW , what is the LOLE for this period? Assume that the appropriate load characteristic is a straight line from the 100% to the 60% load points. Variation of load from 100% to 60% takes place in 100 days. 10
b) Briefly discuss the method of recursion with suitable example.
5. a) If failure rate is constant for a system, then prove that $Q(t)=\lambda t-\frac{(\lambda t)^{2}}{2!}+\frac{(\lambda t)^{3}}{3!} \ldots \ldots \ldots .$.
b) A system contains $5 \times 100 \mathrm{MW}$ units with the following parameters: failure rate $=0.02$ failure $/ /$ day and repair rate $=0.48$ repair $/$ /day. Draw the state space diagram. Compute the capacity outage probability table including rate of departure \& frequency.

Bachelor of Engineering in Electrical engineering Examination, 2018

 (4 ${ }^{\text {TH }}$ YEAR $2^{\text {ND }}$ SEMESTER)
RELIABILITY ENGINEERING

Full Marks 100
(50 marks for each part)
Use a separate Answer-Script for each part

No. of Questions	PART- II	Marks
1. (a) ${ }^{\text {(a) }}$ (b) ${ }^{\text {(a) }}$	Answer any TWO questions For the reliability analysis, a sample of 200 s-identical analog multiplier modules were simultaneously placed for life testing. The test was stopped just when 20 modules failed. The times at which the failures occurred are : 742, $773,786,801,812,839,866,882,903,941,952,966,990$, $1003,1120,1251,1273,1311,1341$, and 1352 hours. Determine the maximum likelihood estimate (MLE) of the failure rate of the multipliers. Calculate the two-sided 90 \% confidence interval for the mean-time-to-failure (MTTF) of the modules. Also obtain the 90% two-sided confidence interval for the reliability of a module at 900 hours, and furthermore, that of a design life of the module on the basis of a reliability of 85%. Assume exponential life distribution. Use the Chi-square table attached. Use linear interpolation wherever necessary. Derive the expressions used for MLE and confidence-interval estimation. Lifetime of a certain type of motor follows a Rayleigh distribution, the probability density function being $f(t)=1.57 \times 10^{-2} t \exp \left(\frac{-1.57 \times 10^{-2} t^{2}}{2}\right) ;$ where t is in years. The manufacturer replaces free all motors that fail while under guarantee. If the manufacturer is willing to replace only 3% of the motors that fail, how long a guarantee shquid he/she offer? What is the average life of this type of motors? If a motor survives for 12 years, what is its probability of surviving a further period of 3 years? Derive the relevant expressions. If $R(t)$ is the system reliability without maintenance, t_{θ} is the time interval between consecutive preventive maintenances and M is the number of complete preventive	15

No. of Questions	PART - II	Marks
4. (a) (b) (c)	Write short notes on any two of the following. Accelerated life testing of electronic components at enhanced humidity, at elevated temperature, and at escalated current. Evaluation of reliability of majority-vote or m-out-of-n engineering systems. Lognormal distribution and its application in the reliability assessment of engineering items.	$\begin{aligned} & 121 / 2 \\ & + \\ & 121 / 2 \end{aligned}$

	PART - II									
			CHI	QUAR	E TAB					
	$\mathrm{K})^{q}$	0.05	0.10	0.80	0.40	0.60	0.80	0.90	0.95	0.975
	1	0.0039	00058	0.0642	0.275	0.7198	1.642	2.706	${ }^{3.841}$	5.024
	2	0.103 0.352	0.211 0.984	0.446	1.022 1.869	1,833 2946	3.219 4.642	4.605	5991	7.378
	4	0.711	${ }_{1}^{0} 1.064$	1,649	2783	4.045	5.989	7.779	9,488	11.143
	5	1.145	1.610	2.343	3.655	5.132	7289	0.236	11.070	12.883
	6	1.635	2.204	3.370	4.579	6.211	8.558	10.845	12.592	14.449
	?	2.167 2.733	2.833 3.450	3.822 4.594	5.493 6.423	7.283 8.351	$\underline{9} 9803$	12.017 13.362	14.067 15.507	16.013 17.535
	9	3.325	4.168	5386	7.337	9.414	12.242	14.684	16.919	19.023
	10	3.940	4.865	6.179	88.295	10.473	13.442	15.987	18.307	280.483
	11	4.575	5.578	6.989	9.237	11.530	14.631	17.275	19.675	21.920
	12	5.226	6.304	7.8107	10.182	12.584	15.512	18.549	21.026	23.337
	13	5.892	7.042	8.6 .34	11.129	${ }^{13} 636$	16.985	19.812	22.362	24.736
	14	6.571	7.790	9.467	12,073	14.685	18.151	21.064	23.685	26.119
	15	7.261	8.547	10.307	13.039	15.733	19.311	22.307	24.996	27,488
	16	${ }^{7} 9682$	9.312	11.152	13,983	16.780	20.465	23.542	26.296	28,845
	17	8.672	10.083	12.002	14,937	17.824	21.615	24.769	27.587	30.191
	18	9.9501	10.865	12.857	15.893	12.868	22766	25989	28.869	31.526
	19	10.117	11.541	13.716	16.850	19.910	23.900	27.204	310.144	32.852
	20	10.851	12.443	14.578	17.809	20.951	25.038	28.412	31.410	34,170
	22	12.338	14.041	16.314	19.729	23.031	27.301	30.813	33.924	36.781
	24	13,848 15379	13.659	18062	21.652	${ }^{25.106}$	29.553	33.196	36.415	39364
	28	15.379 16928	17.92 18.939	${ }_{2}^{19.9888}$	23,579	27.179	31795 34.1027	35.563 37.916	38.885 41.337	41.923
	30	18.493	20,599	23.364	2, 3 ,42	31.316	366.250	${ }_{4} 40.256$	43.773	46.979
	40	26.509	29.051	32,145	37.134	41.622	47.269	51.805	\$5,758	59.342
	610	43.188	46.459	50.641.	56.620	62.135	68.972	${ }^{74.397}$	79.082	83.298
	80	(0.39]	6.278	69.207	76.188	82.566	90.405	96. 578	101.879	106629
	(1) ${ }^{1}$	77.929	\$2.358	87.945	95,808	102.946	111.669	118.498	124.342	129.561
	*	-1.645	-1.282	10.84	0.025	0253	0.841	1.282	1.645	1.960
	Note: If X is a $\chi^{\mathbf{2}}$ random variable with K degrees of freedom, $\operatorname{Pr}\left(\mathrm{X} \leq \chi_{q, K}^{2}\right)=q$									

