## B.E ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER EXAM, 2018

### **SUBJECT: - CIRCUIT THEORY**

Time: Three hours

Full Marks: 100 (50 marks for this part)

| No. of<br>Question | Use a separate Answer-Script for each part  PART -I  Answer any Three  All the parts of a particular question are to be answered sequentially,  (Two marks reserved for well organized answers)                                                                     | Mark<br>s |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1) a)              | A series combination of resistance R $\Omega$ and inductance L H is switched on across a voltage E sin $\omega$ t volts. Derive the expression for the current in the circuit. Sketch the waveform of the current clearly showing its various components.           | (8)       |
| b)                 | In the circuit shown in Fig.Q.1.(b), the switch is closed at $t = 0$ . Derive the expression for the currents $i_1(t)$ and $i_2(t)$ for $t > 0$ .                                                                                                                   | (8)       |
| 2) a)              | Fig.Q.1.(b)  The two-port network shown in Fig.Q.2.(a) is connected at Port-1 to a 10 V d.c. source with an internal resistance of $1\Omega$ . A resistance of $100$ $\Omega$ is connected across the Port-2 of the network. Determine the power drawn from Port-2. | (10)      |
|                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                              |           |
| b)                 | Write a note on the concept of complex frequency.                                                                                                                                                                                                                   | (6)       |

Ref No:

#### Ex/EE/T/211/2018

#### B.E ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER EXAM, 2018

#### **SUBJECT: - CIRCUIT THEORY**

Time: Three hours

Full Marks: 100 (50 marks for this part)



#### Ref No:

## Ex/EE/T/211/2018

## B.E ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER EXAM, 2018

## **SUBJECT: - CIRCUIT THEORY**

Time: Three hours

Full Marks: 100 (50 marks for this part)



### Ref No: Ex/EE/T/211/2018

## B.E. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER EXAM 2018

#### SUBJECT: - Circuit Theory

Time: Three hours

Full Marks 100 (50 marks for each part)

### Use a separate Answer-Script for each part

| No. of                              | PART-II                                                                                                                                                                                                                                                           | Marks |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| Questions Answer any five (5X10=50) |                                                                                                                                                                                                                                                                   |       |  |
| 1. a)                               | In the network given below (Fig 1 (a)), R <sub>1</sub> =R <sub>2</sub> =R <sub>3</sub> =10 ohms, V <sub>1</sub> =10V, V <sub>2</sub> =5 V, I <sub>3</sub> =2A. Obtain a single source equivalent across terminals 'a'-'b' using source transformation techniques. | 5     |  |
|                                     | $ \begin{array}{c cccc}  & & & & & & & & \\  & & & & & & & & \\  & & & &$                                                                                                                                                                                         | 2     |  |
| b)                                  | Fig. 1 Show that Kirchhoff's current law may be written in terms of basic cut-set matrix.                                                                                                                                                                         | 5     |  |
| 2. a)                               | Find the node voltages for the network of Fig 2.                                                                                                                                                                                                                  | 6     |  |
|                                     | 10 × 25 N                                                                                                                                                                                                                                                         | **    |  |
|                                     | Fig 2.                                                                                                                                                                                                                                                            |       |  |
| b)                                  | Are Thevenin's and Norton's theorems applicable to any electrical network? Explain.                                                                                                                                                                               | 4     |  |
| 3.                                  | Find the Thevenin's equivalent of the circuit given in Fig. 3 between terminals 'a'-'b'.                                                                                                                                                                          | 10    |  |
|                                     | R <sub>1</sub> = R <sub>2</sub> = 2.2                                                                                                                                                                                                                             |       |  |
| 8 8                                 | $V_{1} \stackrel{?}{=} 1$ $C \stackrel{?}{=} 1$ $V_{2} = 1$ $V_{3} = 1$ $V_{4} = 0.5 \text{ H}$ $V_{5} = 10 \text{ V/0}^{\circ}$ $C = 1$                                                                                                                          | 41    |  |

## B.E. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER EXAM 2018

#### SUBJECT: - Circuit Theory

Time: Three hours

Full Marks 100 (50 marks for each part)

### Use a separate Answer-Script for each part



### Ref No: <u>Ex/EE/T/211/2018</u>

# B.E. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER EXAM 2018

#### SUBJECT: - Circuit Theory

Time: Three hours

Full Marks 100 (50 marks for each part)

### Use a separate Answer-Script for each part

