B.E. IN ELECTRICAL ENGINEERING SECOND YEAR SECOND SEMESTER 2018

SIGNALS AND SYSTEMS

Full Marks 100 (50 marks for each part)

Time: T	'hree	hours
---------	-------	-------

Use a separate Answer-Script for each part

	Use a separate Answer-Script for each part	1 4 4 4
No. of Questions	PART I	Marks
1 (a)	Answer any THREE questions Two marks reserved for neat and well organized answers. Determine the expressions for the Fourier transforms of the	
¥	following. (i) $x(t) = e^{j\omega_0 t}u(t-\tau)$ (ii) $f(t) = e^{-3t}Cos(10\pi t)u(t)$	3+4
(b)	A function represented by $h(t)$ can take on only real non-negative values for all t and the area under the function is unity. If $H(jf)$ represents the Fourier transform of $h(t)$, show that the $H(jf)$ can never be purely imaginary, and $\int_{-\infty}^{+\infty} H(jf) df \le 1$.	5
(c)	Evaluate the integral $\int_{-\infty}^{+\infty} \frac{Sin^2 (\pi t)}{\pi^2 t^2} dt$	4
2.(a)	Express $f(t)$ shown in Fig. [A], in terms of singularity functions and also sketch its derivative.	50
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Fig. [A]	0.

Ref No: Ex/EE/T/224/2018

No. of Questions	PART I	Marks
	If the impulse response of a linear time-invariant (LTI) system is $h(t) = 2e^{-t/5}u(t)$, obtain the expression for the response of the system when excited by the signal $f(t)$. Do not use any transform method.	6+4
(b)	What are total energy and average power of signals. Point out the classification of signals into 'Energy Signals' and 'Power Signals'. Cite appropriate examples.	
3 (a)	Investigate the significance of AC-coupled crest factor of periodic trains of rectangular pulses.	
	Establish the relation(s) between the duty cycle and the AC-coupled crest factor of such signals.	3+5
(b)	Define odd and even function symmetries of signals.	
	Decompose the signal shown in Fig. [B] into odd and even components.	2+6
	$x(t) \uparrow 5$ $-4 \downarrow 0$ 0 $2 3 \Rightarrow t$ Fig. [B]	

Ref No: Ex/EE/T/224/2018

No. of Questions	PART I	Marks
4. (a)	Introduce the concept of 'Power Spectral Density' (PSD). Explore how the 'Autocorrelation Function' (ACF) of any power signal can be derived from its PSD. Consider the signal $f(t) = A\cos(\omega_o t + \phi)$. Examine the effect of the phase ϕ on the ACF of $f(t)$.	3+3+2
(b)	Two non-interacting linear time-invariant systems with impulse responses $g(t)$ and $h(t)$ as shown in Fig. [C], are in cascade. Obtain the impulse response of the combination, performing time-domain operation. Any appropriate property of convolution may be used for this purpose.	
	$g(t) \uparrow \qquad h(t) \uparrow \qquad \qquad h(t) \uparrow \qquad \qquad \\ 0 \downarrow \qquad \qquad$	8
	Fig. [C]	
5. (a)	Write short notes on any two of the following.	8+8
(b) (c)	Frequency response of 2 nd order LTI systems. Impulse function, its approximations and properties.	ŧ
	Determination of frequency spectra of unit dc, signum function and unit step.	
(d)	Parseval's formula and energy spectral density.	

Ref. No.: EX/EE/T/224/2018

(b)

B. ELECTRICAL ENGINEERING 2^{ND} YEAR 2^{ND} SEMESTER EXAMINATION, 2018

Subject: SIGNALS & SYSTEMS Time: Three Hours

Full Marks: 100

Part II (50 marks)

Question 1 is compulsory

Answer Any Two questions from the rest (2×20)

		Answer Any Two questions from the rest (2×20)		
Ques No.	stion		Marks	
Q1 Answer any Two of the following:				
	(a)	Determine whether the system characterized by the differential equation $\ddot{y}(t) - \dot{y}(t) + 2y(t) = x(t)$ is stable or not? Assume zero initial conditions.	5	
	(b)	The response of an LTI system to a step input, $u(t)$, is $y(t) = (1 - e^{-2t})u(t)$. Find the response of the system to an input $x(t) = 4u(t) - 4u(t-1)$.		
	(c)	Find state equations for the following system $\ddot{y}(t) + 2\dot{y}(t) + 4y(t) = 2u(t)$.		
eti.	(d)	Find an analog simulation that converts feet into inches utilizing the full amplifier range of 0 to ± 10 volts and is capable of converting up to 5 feet.	5	
	×			
Q2	(a)	Obtain the expression for unit step response, in time domain, for a second order underdamped system.	8	
	(b)	When the system shown in Figure Q2(a) is subjected to a unit-step input, the system output responds as shown in Figure Q2(b). Determine the values of K and T from the response curve.	12	
R(s)	C(s) $C(s)$ $C(s)$ T $S(Ts+1)$		

Figure Q2

(a)

Ref. No.: EX/EE/T/224/2018

2+2

4+8

Q3 (a) Draw an asymptotic Bode magnitude plot for the system

$$G(s) = \frac{10s}{(s+1)(s+5)^2}$$

- (b) Stating the simplifying assumptions obtain the transfer function of an armature controlled d. c. motor driving a load with viscous friction. Develop the block diagram for the system.
- Q4 (a) Define state and output equation for an LTI system.
 - (b) Consider an LTI system given by the transfer function:

$$G(s) = \frac{s^2 + 7s + 2}{s^3 + 9s^2 + 26s + 24}$$
8+4

Obtain the state-space model of the system in the phase variable canonical form. Draw the corresponding block diagram indicating the individual states.

- (c) Find the initial value of $\frac{df(t)}{dt}$ for $F(s) = \mathfrak{L}[f(t)] = \frac{2s+1}{s^2+s+1}$
- Q5 (a) (i) Draw analog simulation diagram for the following system, and, (ii) obtain magnitude-scaled analog simulation of the system to utilize the full amplifier range of 0 to 10 volts without any overloading.

$$\ddot{x} + 8\dot{x} + 25x = 500$$
, $x(0) = 40, \dot{x}(0) = 150$, with, $|x|_{max} = 50$, $|\dot{x}|_{max} = 250$.

(b) Obtain the transfer function, $E_o(s)/E_i(s)$, for the bridged-T-network shown in Figure Q5.

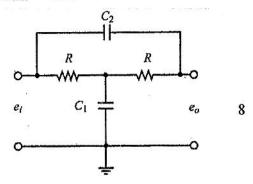


Figure Q5