BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING 2ND YEAR 1ST SEM EXAMINATION, 2018

ELECTRONICS - II

Time: Three hours

Full Marks: 100

Use a separate Answer-Script for each Part

PART-I (50 MARKS)

Answer Q.1 and any two questions from the rest $[10+2\times20=50]$ 1. Answer any *five* from the following $[5 \times 2 = 10]$ a) What is tri-state logic? b) Draw the truth table of a NAND gate. c) What is literal? d) (4C.A5)₁₆=(?)₁₀ e) Define Fan in and Fan out. f) How many select lines a 16 to 1 multiplexer have? g) What is the difference between latch and Flip-Flop? a) What is the 2's complement binary number representation of +63 and -63. Use 7 bits. [4] b)Perform following subtraction [6] i) 11001-10110 using 2's complement ii) (44)_H-(1B)_H using 16's complement c) State and prove De-Morgans' theorems. [5] d) Prove the following equations using the Boolean algebraic theorems: i) A + A' B + AB' = A + B[2+3]ii) A'BC + A B'C + ABC' + ABC = AB + BC + AC3. a) Define implicant, prime implicant and essential prime implicant. [5] b) Minimize the following logic function using K-maps and realize using $F(A,B,C,D) = \sum m(1, 3, 5, 8, 9,11,15) + d(2,13)$ [5] c) Implement the following function using i) 8 to 1 multiplexer ii) 4:1 Multiplexers $F(A,B,C,D) = \Pi M(0,1,2,5,9,11,13,15)$ [5+5]

EX/EE/ET/T/214/2018

4.	a) Design a Full address.' XX 10 4 4	
т.	a) Design a Full adder using Half Adders. Design a Full adder using a suitable decoder.	[4+4]
	b) Explain a full adder/subtractor circuit operation with help of a flow chart.	[12]
5.	a) Explain the operation of S-R Flip-Flop using NAND gate only.	[6]
	b) Explain the operation of D flipflop. Use Preset and Clear for external control of initial state.	[6]
	b) What is Race around condition in J-K flip-flop and how Master Slave combination helps to solve	[8]
	the problem?	

B. E. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER EXAMINATION, 2018
Subject: Electronics-II Time: 3.0 Hours Full Marks: 100

Use separate Answer - Script for each Part

50 marks for each part

PART-II

No. of	Answer any TWO (2) questions from the followings: 2×25	Marks
questions		
1.	(a) What do you meant by an <i>oscillator</i> ?	2+3+5+(4+4+3)
	(b) Classify the oscillators in accordance with frequency generation.	+4
	(c)Explain the oscillator principle.	
	(d) Give the circuit diagram of a Wien-bridge oscillator using OPAMP.	
	Explain how oscillation principle is satisfied in this circuit? How the	
	frequency of oscillation is determined for such oscillator?	
	(b) Design a Wien-bridge oscillator that oscillator that oscillates at 25 KHz.	
	Given that $C_1 = C_2 = 0.001 \ \mu\text{F}$.	4+3+(3+2)+(4+4)
2.	a) Distinguish between <i>multivibrator</i> and <i>oscillator</i>.(b) Mention the area of application of <i>oscillator</i>?	+5
	(c) Gives the internal circuit diagram of <i>IC</i> 555 and specify the components	
	and devices are used.	
	(d) Explain the operation of <i>Monostable multivibrator</i> using 555 IC with	
	necessary circuit diagram.	
	(e) How IC 555 can be used as a voltage controlled oscillator?	
2		
3.	(a) Define a constant current and voltage source. How a JFET can be used	4+(4+6)+8+3
v v	as constant current source? Explain clearly with suitable circuit diagram	
	and output characteristic.	
	(b) Give the block diagram of a voltage regulator and explain the function of	
	each block. Describe how a <i>transistorised shunt voltage regulator</i> provides a steady state output voltage against the input voltage fluctuation?	. ×
	(c) Calculate the current gain of Darlington pair transistor configuration with	, ,
	following data Beta (β) of one is transistor is 100 and another is 150.	
	Tollowing data Deta (p) of one is transistor is 100 and another is 100.	* ***
4.	(a) Explain the operation of a 2-input CMOS NOR gate with suitable circuit	7+(4+5)+(4+5)
	diagram.	
	(b) Draw a transistor transistor logic (TTL) circuit. Explain how the output of	8
.*	this circuit becomes high when one of the emitter inputs is low.	
	(c) Give the circuit diagram of IC 7805 voltage regulator. Explain the	
	operation of this circuit.	×
		20