## B. Construction Engineering 4<sup>th</sup> Year 2<sup>nd</sup> Semester Examination 2018 STRUCTURAL DYNAMICS & EARTHQUAKE ENGINEERING

Time: Three Hours Full Marks: 100

Assume any relevant data not provided, IS: 1893(Pt-I), 2016 is allowed in the Hall **Answer any Four Questions** 

- a) Describe Dynamic Equilibrium of a SDOF structural system and discuss dynamic parameters in the light of D' Alembert's principle.

  6[CO1]
  - b) Discuss Critical Damping & Critical Damping Ratio

6[CO1]

OR

- c) Discuss the significance of Free Vibration Analysis and Natural Frequency 6[CO2]
- d) Calculate the natural frequency & time period of the simple supported beam as shown in Fig.1. Neglect the mass of the beam 8[CO2]



- e) If a springs having spring constant of 5 kg/cm is placed just below the load (at centre of the beam), compute the change in the circular frequency of the system.

  5[CO2]
- 2 a) Derive the solution of a SDOF system considering free vibration with damped condition. Give the expression of time period of the system . 15[CO3]
  - b) Deduce Logarithmic Decrement Method for evaluating damping. 10[CO3]
- 3 a) Discuss transient phase & Steady state motion in forced vibration? 4[CO4]
  - b) Derive the solution for Steady State Motion of the SDOF system under Forced Vibration of  $M\ddot{x} + C\dot{x} + Kx = F_f \sin w_f t$ .
  - c) Deduce the expression of Dynamic Load Factor from the above solution 5[CO4]
  - d) Discuss the significance of Tuning Factor & Critical Damping Ratio 4 [CO4]

OR

e) Evaluate the D.L.F for tuning factor 0. 98 and damping ratio is 5 %. 4 [CO4]

[Turn over

4 a) What are the important characteristics of Earthquakes?

5 [CO5]

- b) Compare between Near Field & Far Field effects of Earthquake
- 6 [CO5]
- c) Discuss on favourable structural configuration with respect to better seismic resisting features.

  6 [CO5]
- d) Discuss Response Spectrum Method for Dynamic Analysis of structures 8[CO5]
- 5 A Four Storied RCC frame office building located in Jaynagar, South 24 Parganas, WB. The plan of the building is shown below in Fig 2.



Fig. 2

The soil condition is medium stiff and supported on Raft foundation. The RC frames are in-filled with brick-masonry. The lump weight due to DL is 12.5 KN/m<sup>2</sup> on floors and 10.5 KN/m<sup>2</sup> on roof. The Live load on floors is 4 KN/m<sup>2</sup>. Determine the Design seismic Force of the frame 4/P-Q-R-S by **dynamic analysis** method. The free vibration analysis dynamic properties are given below.

| Natural               | Mode 1     | Mode 2  | Mode 3  |
|-----------------------|------------|---------|---------|
| Period (S)            | 1.20       | 0.765   | 0.223   |
| Floor                 | Mode Shape |         |         |
| Roof                  | 1.000      | 1.000   | 0.765   |
| 3 <sup>rd</sup> Floor | 0.876      | 0.344   | -0.824  |
| 2 <sup>nd</sup> Floor | 0.612      | -0.578  | - 0.566 |
| 1st Floor             | 0.388      | - 0.786 | 1.000   |