B.E. CONSTRUCTION ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM - 2018

Subject: WATER RESOURCES ENGINEERING

Time: Three hours

Full Marks: 100

PART-I

Instructions:

- 1. Answer all questions.
- 2. Illustrate your answers with neat sketches wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.
- 1. (a) Explain the biological treatment techniques for treating waste-water **OR** Activated Sludge Process. (14)
- 2. A. (i) Deduce an expression for determining BOD at any time. What are the factors on which the De-oxygenation constant (K) depends?
- (ii) The BOD of a sewage incubated for one day at 30° C has been found to be 125mg/l. What will be the 5 day 20° C BOD? Assume K = 0.15 (Base 10) at 20° C.

OF

- B (i) The 3 day 37°C BOD of a sample of sewage is 400ppm. What will be its 10 days 20°C BOD, and day 30°C BOD?
- (ii) Draw a flow diagram from an outfall to the disposal into a river valley after complete treatment for a proposed sanitary project of a town. Indicate the significance of each unit adopted during the process treatment. (18)
- 3. A (i) What is Manholes? Explain the need of manhole. Draw neat sketch of deep manhole.
- (ii) Write short notes on any three of the followings.
 - (1) Lamp hole.
 - (2) C.O.D
 - (3) Population Equivalent.
 - (4) TOC.

OR

- B (i) Mention the merits of trickling Filter.
- (ii). Find the diameter of a circular sanitary sewer for the following data:
- (1) Population = 1, 60,000.00. (2) Average Sewage Flow = 200litres/head/day. (3) Slope of sewer = 1 in 1000. (4) Value of n in Manning's formula = 0.015. (18)

Ref. No.: Ex/CON/T/216/2018(S)

B. Construction Engg. 2nd Yr 1st Sem. Supple Exam. 2018

Sub.: Water Resources Engg.

(Part-II)

Answer Q. No. 1 and any two from the rest.

1. i) Write TRUE or FALSE:

1 x 5

- a) For estimating the missing precipitation data P_x , there is no importance of the average annual rainfall of the unknown station (x).
- b) The coefficient of variation in connection with the optimum number of rain gauges is inversely proportional to the sample standard deviation.
- c) In order to obtain the surface runoff graph from the runoff hydrograph, the base flow is required.
- d) Ranking of the storm is the product of recurrence interval and total number of years on record.
- e) Suitable importance is attached to the various stations in 'Thiessen's' and 'Isohyetal' methods, but not in 'arithmetic mean' method.
- ii) Write short notes on the following:

1x5

- a) Pan shaped catchment and fern shaped catchment
- b) Hydrograph
- c) Determination of velocity of stream
- d) Recurrence interval of time
- e) Infiltration capacity curve
- 2. a) What do you mean by W_{index} and Φ_{index} ? Explain giving suitable sketches wherever necessary.
- b) The following are the rates of rainfall for successive 20 minutes period of a 140 minutes storm: 2.5, 2.5, 10.0, 7.5, 1.25, 1.25, 5.0 cm/hr. Taking the value of Φ_{index} as 3.2cm/hr, find out the net runoff in cm, the total rainfall and the value of W_{index} . 5 + 15
- 3. a) What is the equation of the infiltration capacity curve? Show that on a log-log scale, this equation represents a straight line having a slope = $-1/(K\log_{10}e)$.
 - b) Following velocities were recorded in a stream with a current meter.

Depth above bed (m):

0 1 2 3

Velocity, m/sec

0 0.5 0.7 0.8 0.8

Find the discharge per unit width of stream near the point of measurement. Depth of flow at the point was 5m. 10 + 10

4. a) Write a short note on measurement of rainfall by rain gauges.

b) In a typical 4 hr. storm producing 50mm of excess rain from a basin, the following flows in the stream, are recorded:

Time in hours	Flow in cumecs	
0	0.0	
· 2	1.2	2
4.	4.0	5
6	6.7	5
8	5.6	7
12	3.3	75
16	1.3	5
20	0.0)
	and the second of the second o	

a) Plot the unit hydrograph of run off for this storm.

b) Estimate, as accurately as possible, the peak flow and the time of its occurrence, in a flood created by a 8 hours storm, which produces 2.5cm of effective rainfall during the first 4 hours and 3.75 cm of effective rainfall during the second 4 hours. Assume the base flow to be negligible. 5+15