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                               Answer any five questions.
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(b) Solve by Crammer’s rule x+2y+ 3z = 6,  2x + 4y + z = 7,
3x + 2y + 9z =14. 5
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6. (a) State and prove Euler’s theorem for homogeneous
functions of degree n. 2+7

(b) If u = exyz, then show that
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(c) If     1cos /u x y x y    then show that

1
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7. (a) When a function is called solenoidal and irrotational ? 3

(b) Let f (x,y, z) = x2 + y2 + xz. Find the directional derivatives
of f at the point P(2, –1, 3) in the direction of the vector
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. 7

(c) Let 2 ˆˆ ˆ( , , ) 2F x y z xzi xj y k  


. Evaluate 
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where

V is the region bounded by the surfaces x = 0, y = 0, z = x2,
y = 6, z = 4. 10

8. (a) State Green’s theorem. Show that the area bounded by a

simple closed curve C is given by  1

2 C
xdy ydx . 10

(b) State Gauss Divergence theorem. Use it to evaluate .
S
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 and S is the surface of the
cube bounded by x = 0, x =1, y = 0, y =1, z = 0, z =1. 10
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2. (a) Find the inverse of 
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(b) Find the rank and normal form of the matrix
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(c) Solve (if possible)

(i) x + y + z +  = 0

x + 3y + 2z +4 = 0

2x + z – = 0

(ii) x – 2y +z – = –1

3x – 2z +3= – 1

5x – 4y + = – 4 5+3

3. (a) Find the eigen values and eigen vectors of the matrix
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(b) Without integrating prove that
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4. (a) State and prove Darbaux’s theorem. 1+6

(b) Evaluate 
b m
a

x dx  from definition of Riemann integral

as limit of sums. 5

(c) Test the convergence
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5. (a) State Rolle’s theorem. Explain with reasons whether
Rolle’s theorem is applicable to f (x) = tan x in [0 ,]. 5

(b) State and prove Lagrange’s Mean Value Theorem. Give
its geometric interpretation. 1+5+2

(c) If  30
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 exists then find the value of ‘a’

and also find the limit. 7


