Ex./CON/MATH/T/112/2018
BACHELOR OF CONSTRUCTION ENGINEERING EXAMINATION, 2018
(1st Year, 1st Semester)
Mathematics - IE
Time : Three hours
Full Marks : 100

Answer any five questions.

1. (a) Show withous expanding
(i) $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$
(ii) $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
(b) Solve by Crammer's rule $2 x+3 y+4 z=20$, $x-5 y+6 z=9,3 x+4 y-5 z=-4$.
(c) Find the inverse of

$$
\left(\begin{array}{ccc}
3 & 2 & 1 \\
1 & 1 & 1 \\
5 & 1 & -1
\end{array}\right)
$$

2. (a) Find the rank and normal form of the matrix

$$
\left(\begin{array}{cccc}
2 & 0 & 2 & 2 \\
3 & -4 & -1 & -9 \\
1 & 2 & 3 & 7 \\
-3 & 1 & -2 & 0
\end{array}\right)
$$

(b) Solve the system of equations

$$
\begin{array}{cc}
\text { (i) } x+y+z+u=0 & \text { (ii) } x-2 y+z-w=-1 \\
3 x+4 y-z=0 & 3 x-2 z+3 w=-4 \\
x+2 y-3 z+u=0 & 5 x-4 y+w=-3
\end{array}
$$

(c) Find the eigen values and eigen vectors of

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 1 \\
1 & 2 & 0
\end{array}\right)
$$

3. (a) Without integrating prove that
(i) $\int_{0}^{\pi} x \sin x \cos ^{2} x d x=\frac{\pi}{3}$
(ii) $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x=\frac{\pi}{8} \log 2$
(b) State and prove Fundamental Theorem of integral calculus.
4. (a) State Green's theorem in a plane.
(b) Show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \int_{C}(x d y-y d x)$.
(c) State the Gauss, Divergence Theorem. Use it to evaluate $\iint_{S} \vec{F} . \overrightarrow{d s}$ where $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$ and S is the surface of the cube bounded by $x=0, x=1$, $y=0, y=1, z=0, z=1$.
5. (a) State and prove Euler's theorem for homogeneous functions of degree n.
(b) If $f(x, y)=x y \cdot \frac{x^{2}-y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0)$

$$
=0 \quad,(x, y)=(0,0)
$$

then show that $\frac{\partial^{2} f}{\partial x \partial y} \neq \frac{\partial^{2} f}{\partial y \partial x}$ at $(0,0)$.
(c) If $\lim _{x \rightarrow 0} \frac{\sin 2 x+a \sin x}{x^{3}}$ exists then find the value of ' a ' and also find the limit.
7. (a) Define directional derivative of a scaler function in the direction of a fixed vector.
(b) Let $\phi(x, y, z)=x^{2}+y^{2}+x z$. Find the directional derivative of ϕ at the point $P(2,-1,3)$ in the direction of the vector $\vec{A}=\hat{i}+2 \hat{j}+\hat{k}$. 8
(c) Let $\vec{F}(x, y, z)=2 x z \hat{i}-x \hat{j}+y^{2} \hat{k}$, evaluate $\iiint_{V} \vec{F} . d v$ where V is the region bounded by the surfaces $x=0$, $y=0, y=6, z=x^{2}$ and $z=4$.
(c) Give an example of a function which is not Riemann integrable.
4. (a) State and prove First Mean Value Theorem of integral calculus.
(b) If f is Riemann integrable on $[a, b]$ then prove that $|f|$ is also so on $[a, b]$ and $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.
(c) Evaluate (if possible)
(i) $\int_{0}^{\infty} \frac{d x}{(1+x) \sqrt{x}} \quad$ (ii) $\int_{-\infty}^{\infty} \frac{x d x}{x^{4}+1}$
$5+4$
5. (a) Let S and T be any two non-empty sets. Show that there is a bijection between $S \times T$ and $T \times S$.
(b) State Rolle's Theorem. If $f(x)=\tan x$ in a domain containing 0 and π, explain whether Rolle's theorem is applicable to f in $[0, \pi]$?
(c) If $f(h)=f(0)+h f^{\prime}(0)+\frac{h^{2}}{2} f^{\prime \prime}(\theta h), 0<\theta<1$, find the value of θ when $h=1$ and $f(x)=(1-x)^{5 / 2}$.

