BACHELOR OF COMPUTER SCIENCE AND ENGINEERING Third Year, Second Semester Examination, 2018

Principles of Programming Languages

Time- Three Hours

Full Marks-100

	₩	
	Answer any five questions	
1.	(a) Discuss about different kinds of data abstraction techniques.(b) Describe Von Neumann bottleneck.(c) How can a programming language be defined?	10+2+8
2.	 (a) How would you define efficiency of a programming language? (b) Give an example of orthogonal language design. (c) Discuss about Turing tarpit. (d) State Flon's axiom. 	10+4+3+3
3.	 (a) Write code snippets to compute factorial of a number following imperative, functional logic programming paradigm. (b) Write referentially transparent code to compute gcd of a number. Justify your answ (c) How can functions be treated as first class data values? Give an example. 	ver.
4.	 (a) What is behavior parameterization? How is it implemented in Java? (b) Which of these lambda expressions are valid Function<long,long> implementati Explain. (i) x → x + 1; (ii) (x) → (y) → (z) → x + y + z + 1;</long,long> 	10+6+4 ons?
	<pre>(c) Would the following Java code compile? Give reasons w.r.t functional interfaces. i. Runnable helloWorld = () -> System.out.println("hello ii. The lambda expression being used as an ActionListener:</pre>	.ned
	(d) Find the String with the largest number of lowercase letters from a List<string> us expressions in Java.</string>(e) Given a text file, print the duplicate words using Lambda expressions in Java.	sing Lambda 7+3+4+2+4

[Turn over

5. (a)	public class Trader	public class Transaction
W.	private final String name; private final String city;	private final Trader trader; private final int year; private final int value;
	public Trader(String n, String c); public String getName(); public String getCity();	<pre>public Trader getTrader(); public int getYear(); public int getValue();</pre>

Given the Trader and Transaction class (as shown), write code snippets using Java Streams API for the following queries:

- (i) Find out a list of all the unique cities where the traders work.
- (ii)Print the maximum and minimum of all transactions' values for the traders living in Cambridge.
- (iii) Group transactions by cities and then further categorize by whether they're expensive or not (multilevel groupings should be used).
- (b) Write implementation of the functions max(), map(), filter() and count() using only reduce and Lambda expressions. You can return a List instead of a Stream if you want.

10+10

- 6. (a) Use normal order reduction and applicative order reduction to reduce the following Lambda expressions.
 - (i) $(\lambda x. \lambda z.z)$ $((\lambda y. yy) (\lambda u. uu))$
 - (ii) $(\lambda x \cdot x \cdot x \cdot x) (\lambda x \cdot x \cdot x \cdot x)$
 - (iii) $((((\lambda f.(\lambda g.(\lambda x.((fx)(g x)))))(\lambda m.(\lambda n.(n m))))(\lambda n.z))p)$
 - (b) How would you find predecessor and successor of 2 in Lambda calculus?
 - (c) How can the successor function be used to sum two natural numbers? Show the steps to find out the sum of 2 and 5. (3+2+3)+8+4
- 7. (a) Write Prolog clauses to express the relationships: grandparent, cousin, sibling and mother. Given Parent (X,Y) means X is a parent of Y.
 - (b) Write a program in Prolog to sort a list of numbers according to insertion sort algorithm.
 - (c) Given the following Prolog clauses:

```
ancestor(X, Y):- parent(X, Z), ancestor(Z, Y). ancestor(X, X). parent(amy, bob).
```

Place cut in such a way that (i) all solutions can be found; (ii) all solutions are pruned; (iii) one solution is found.

Show the search tree to be generated for the query ancestor(X, bob) for each of the cases. 6+5+9

- 8. (a) Describe multimethods with respect to object oriented programming.
 - (b) Compare between abstract methods and higher order functions.
 - (c) Describe currying in lambda calculus. How is it supported in Java through functional interfaces? Write relevant code snippets.
 - (d) Discuss width subtyping and depth subtyping and their relevance in object oriented programming.

 4+4+7+5