B.E COMPUTER SCIENCE AND ENGINEERING $3^{\text {rd }}$ YEAR $1^{\text {st }}$ SEMESTER SUPPLEMENTARY EXAMINATION 2018
 Formal Languages and Automata Theory

Time: 3 hours

Answer any five questions

1(a) Give a DFA for $\sum=\{a, b, c\}$ that accepts any string with aab as a substring.
(b) Convert the following ϵ-NFA to DFA.

2(a) Find the minimum-state DFA for the following:

(b) State the pumping lemma for regular languages. Explain its significance. Show that $\left\{0^{n} 10^{n} \mid n \geq 1\right\}$ is not regular.
3. a) State the pumping lemma for Context-Free languages.
b) Using the pumping lemma, show that the language $\left\{a^{n} b^{n} c^{n} \mid n>=1\right\}$ is not context free.
4.a) Give a Context Free Grammar (CFG) to generate $\left\{w \in\{0,1\}^{*} \mid w=w^{R}\right.$ and $|w|$ is even $\}$
b) Prove that the class of Context Free Languages is closed under concatenation.
c) Construct a Non Deterministic Push Down Automata (NPDA) that recognizes the following Context Free Language:

$$
\mathrm{L}=\left\{a^{*} w c^{k} \mid w \in\{a, b\}^{*} \text { and } \mathrm{k}=|\mathrm{w}|_{\mathrm{a}}\left(\mathrm{k}=\text { number of } \mathrm{a}^{\prime} \mathrm{s} \text { in } \mathrm{w}\right)\right\} .
$$

Give the state transition diagram of the NPDA.
$4+8+8$
5. Given two positive integers x and y, design a Turing Machine to compute $x+y$. Give the transition diagram of the machine.
Hints: Assume unary representation in which an integer is represented by a string of as many 0's as the decimal value of the integer is. For example, 5 is represented as 00000 . Also assume that a 1 is used as a separator between two integers on the tape. For example, if $x=5$ and $y=3$ then a string 000001000 is initially placed over the tape prior to computation of $x+y$. After completion of the computation a string 000000001is left over the tape.

6. Write short notes on (any three)

Halting Problem, Universal Turing Machine, Recursive and Recursively Enumerable languages, Chomsky hierarchy of languages, P and NP classes of problems.

