B.E. Computer Science & Engineering Examination 2018 Second year First Semester

NUMERICAL METHODS

Time: 3 hours. Full Marks: 100

Answer question no.1 and any 4 from the rest. All parts of same question should be answered together.

		그들은 사용을 하고 있다. 그리고 하는 사람들은 사람들이 가장 하는 것이 되었다. 그리고 하는 것이 되었다. 그리고 하는 것이 되었다.	
1.	a) b) c)	Draw a comparison between regula falsi method and secant method. Show that Newton- Raphson formulato find via a 20 and between regulators.	2
		in the form	
	d)	$X_{n+1} = [X_n + a/X_n]/2$ Write down the expressions for truncation errors for Trapezoidal method,	4
		Simpson's $\frac{1}{3}$ rule and Simpson's $\frac{3}{8}$ rule. Define Δ , and E. Hence prove that	3
		$\Delta - \nabla = -\Delta \nabla$	
	f)	Why Gauss-Seidel method is better than Jacobi's method for solution of	3
	~1		
	g)	i di	1
	h)	symmetric matrix? Modify Newton, Pophage it as it as	2
		Modify Newton-Raphson iteration formula for solution of a nonlinear equation with multiple roots at a point.	
		point.	2
2.	a)′	Describe secant method for solution of non-linear equations.	
	-/	Dom'to the order of convergence to the	4 5+5
	C)	solve the following equation using Newton-Raphson method.	5 7 5
		$X = 100_{10} Y = 1.7 = 0$	•
		Solution is required to be corrected upto 4 decimal places. Choose your own initial approximation.	
3.	a)	Discuss Jacobi's iterative method for finding the roots of linear	
	b)	Write down the method in matrix notation	6
	()	Hence find the convergence of the method	4
	a).	Solve the following system of equations by LU decomposition method.	4
		이 하면 하다 하는 사람이 되었다. 이 집에서 사람들이 되었다면서 얼마를 모르는 하다고 있는 것을 하는데 살아가고 있다면 다른데 되었다.	, ,
		x + y + z = 9 2x - 3y + 4z = 13	
		2x - 3y + 4z = 13 $3x + 4y + 5z = 40$	
		34 · 75 · 32 - 40	
		1	
		Turn ov	er J

- 4. a) Define the terms eigenvalue and eigenvector.
 - b) Find all the eigenpairs (λ_i , X_i) of the following matrix by Jacobi's method.

							•
		3	2	2 2 3			
A	=	2	5	2			
		2	2	3			8

c) Given the following table of values:

	 	0.0	25	20	1.5	1.0	X
40	3.5	3.0	2.5	2.0	1.0	1.1	37
				1.6	1.3	1.1	<u>y</u>
		2.7		1.6	1.3] [1.1]	у

Scale the x-values so that their mean becomes zero. Obtain a least squares fit of the following form to the scaled tabular values.

$$y = aX^2 + bX + c$$

Finally, restore the unscaled form of the fitted polynomial.

10

10

2

- 5. a) Discuss Adams-Bashforth method for solution of ordinary differential equations for initial value problem.
 - Solve the following initial value problem using Euler's method.

 $\frac{1}{dx}$ = 3(x+y) with y(0) = 1 Solution is required over [0,1] with h = 0.1.

Calculate the percentage error with the exact solution

$$y = (4 e^{3x} - 3x - 1)/3$$

6. a) Derive Gauss central difference interpolation formulae.

b) The velocity 'v' of a particle at a distance 's' from a point on its path is given in the following table:

's' in metres	0	10	20	30	40	50	(0
'v' in m/sec	47	58	64	65	61	50	60
				03	O.I.	52	38

Estimate the time taken to travel 60 metres using Simpson's 1/3 rule.

6

c) Find the inverse of the following matrix using Gauss-Jordan method.

$$A = \begin{array}{cccc} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{array}$$

7. a) Discuss Romberg's method for evaluating the integral of the following form.

 $\int_{b}^{1} f(x) dx$

b) Evaluate the following integral using Gauss Quadrature formula. Take n=2, 3 and calculate the errors with respect to the true value.

 $\int_0^1 (1/(1+x^2)) dx$

8. a) Discuss basic principles of Spline interpolation method.
b) Describe Bairstow's method for finding complex roots of a polynomial

equation.