B. CSE 2ND YEAR 2ND SEMESTER EXAMINATION 2018

MICROPROCESSOR AND ASSEMBLY LANGUAGE PROGRAMMING

Time: Three Hours Full Marks: 100

Different parts of the same question must be answered together

Answer any one from the following Q1 and Q2:

- 1. a) Describe the functions of different units of a computer system with the help of a schematic diagram. Write the steps for executing an instruction. In 8085 μ P, why is address bus unidirectional and data bus bi-directional? 5+5+(2+3)
 - b) Describe the different addressing modes of 8085 μP with examples.
- 2. a) Describe the functions of BIU and EU of the 8086 μ P using their schematic diagrams. 10
 - b) Describe how program execution speeds up in 8086 μP ?

5

- c) If the CS register contains 2050_H and IP register contains 3BA2_H, what is the physical address of the instruction to be fetched?
- d) What are the advantages of segmentation based approach to m/m accessing in 8086 μP . 5

Answer the following Q3:

- 3. (a) Interface 3K memory as two memory chips (modules) of 2K (M1) and 1K (M2) beginning at address 4000_H using suitable decoders. Explain its address decoding technique and find its RAM address range, Assume/generate appropriate signals and pins.
 - b) What is partial decoding? Explain foldback memory using the data given in Q3. (a). 5+5

Answer any two from the following Q4 - Q6:

- 4. a) Describe the sequence of steps required for data transfer between microprocessor and an I/O device with appropriate schematic diagram.
 - b) Write the sequence of steps for DMA operation.

5

- c) Describe a scheme with a schematic diagram to resolve multiple interrupts from two or more peripherals simultaneously through INTR line.
- 5. a) There are N bytes stored from m/m location $2500_{\rm H}$. The value of N is stored in $2400_{\rm H}$. Write an 8085 program (with comments) to interchange the bit D_6 with D_I (irrespective of their values) of these bytes and store them into the m/m locations starting from $5050_{\rm H}$.
 - b) Write a program (with comments) to find the sum of odd bytes out of N bytes stored in consecutive locations starting from 2500_H. The value of N is stored in 2200_H. Store the result in locations 2300_H and 2301_H.
- a) N bytes are stored in consecutive m/m location starting from 2050_H. The value of N is stored in 204F_H. Write an 8085 program to test whether a byte stored in 204E_H is present in the list. If present, store its position in the list at 204D_H; otherwise store FF_H.
 - b) Write an 8085 program to generate N^{th} fibonacci number and store it in 2050_H. The value of N is stored in memory 2060_H.