B.CSE, 2ND YR. 1ST SEMS EXAM, 2018

MATHEMATICS - IV

Full Marks: 100 Time: Three Hours

Answer question number 1 and any six questions from the rest.

- 1. Find the radius of convergence of the following series. (4)
 - (a) $\sum_{n=1}^{n=\infty} \frac{(ax+b)^n}{c^n}$, where a, b and c are real numbers and $c \neq 0$.
 - (b) $\sum_{n=1}^{\infty} \frac{2^{2n}x^n}{n^2}$
- 2. Solve Hermite differential equation

$$y'' - 2xy' + 2\alpha y = 0,$$

where α is a constant.

- (a) Find two linearly independent solutions near x = 0. Write first three terms in each series. (8)
- (b) Find radius of convergence for both the series. (2)
- (c) Show that there is a polynomial solution of degree n, in case $\alpha = n$, a non-negative integer. (2)
- (d) Find those particular polynomials of degree n denoted by $H_n(x)$ for n = 0, 1, 2, 3, such that coefficient of x^n in $H_n(x)$ is equal to 2^n .
- 3. (a) Classify the singularity of the differential equation $xy'' y' + 4x^3y = 0$. Find Frobenius series solution about the singular point of the equation. Write first three non-zero terms in each series. Also express the solution in terms of elementary functions.
 - (b) Find general solution of the Cauchy-Euler equation $9x^2y'' + 3xy' + y = 0$ (6)
- 4. (a) Find general solution of the differential equation (8)

$$y'' + y' - 6y = 10e^{2x} - 18e^{3x} - 6x - 11.$$

(b) Use the method of variation of parameters to find a particular integral of the differential equation (8)

$$y'' + 6y' + 9y = \frac{e^{-3x}}{x^3}.$$

5. (a) Prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$ (10)

where $P_n(x)$ is the Legendra polynomial of degree n.

- (b) Write generating function of Legendre ploynomials. Use that function to prove
 - i. $P_n(-x) = (-1)^n P_n(x)$ ii. $P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2^n n!}$
- 6. (a) State the orthogonality property of Chebyshev ploynomials of first kind. (10) Plot first five Tchebyshev polynomials of first kind. Find the Tchebyshev series expansion of $sin(cos^{-1}x)$. Write first five terms of the series.
 - (b) Prove that $T_n(x) = \cos(n\cos^{-1}x)$ is a polynomial of degree n. Derive a recursion relation on $T_n(x)$.
- 7. (a) Show that $f(z) = \bar{z}$ is nowhere differentiable. (4)
 - (b) Show that the function $f(z) = (x^2 + y) + i(y^2 x)$ is not analytic at any point. (4)
 - (c) Calculate $\int_{\gamma} |z|^2 dz$, where γ denotes the contour that goes
 (i) vertically from 0 to i, then horizontally from i to 1+i,
 (ii) horizontally from 0 to 1, then vertically from 1 to 1+i.
 - (d) Write all values of i^i in the form a + ib. (2)
- 8. (a) Use Cauchy integral formula to show that (4)

$$\int_{\gamma} |z+1|^2 dz = 2\pi i, \quad \text{ where } \quad \gamma(t) = e^{it}, 0 \le t \le 2\pi$$

- (b) Find Laurent series expansions of the following functions around z = 0
 (i) \(\frac{1}{z(1-z)}\) valid for 0 < |z| < 1,
 (ii) z³e^{1/z} valid for |z| > 0.
- (c) Consider a circle of radius 1, and let Q_1, Q_2, \ldots, Q_n be the vertices of a regular n-gon inscribed in a circle. Join Q_1 to Q_2, Q_3, \ldots, Q_n by segments of lengths $\lambda_2, \lambda_3, \ldots, \lambda_n$. Show that

$$\prod_{i=2}^{n} \lambda_i = n.$$

- 9. (a) Find the poles and their orders of the functions (i) $\frac{1}{z^4+16}$ (ii) $\frac{1}{z^2+z-1}$ (4)
 - (b) Describe the type of singularity at z=0 of each of the following functions (i) $z^3 \sin^2 z$ (ii) $\frac{\cos z 1}{z^2}$

(c) By considering the function $f(z) = \frac{e^{iz}}{z^2 + 4z + 5}$ integrated around suitable contour , find

$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2 + 4x + 5} dx.$$

- 10. (a) Expand $f(x) = x^2, 0 < x < 2\pi$ in a Fourier series if the period of f(x) is 2π . Hence find the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (b) Find Fourier series expansion of a function of period 10, given by (6)

$$f(x) = \begin{cases} 0, & -5 < x < 0 \\ 3, & 0 < x < 5 \end{cases}$$