Ex/CSE/Math/T/114A/2018(S)

B. E. Computer Science and Engineering Examination, 2018

(1st Year, 1st Semester, Supplemantary)

Mathematics- II

Time: Three hours
Full Marks: 100
(Answer any five questions)

1. a) Prove that every convergent sequence is bounded. 10
b) Prove that the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ where $\mathrm{x}_{\mathrm{n}}=\frac{1}{\mathrm{n}+1}+\frac{1}{\mathrm{n}+2}+\cdots+\frac{1}{2 \mathrm{n}}$ is a convergent sequence. Estimate the value of the limit.
2. a) State Cauchy's general principle of convergence of an infinite series.

Prove that if $u_{n}>0$ and if
$\operatorname{Ltt}_{n \rightarrow \infty}\left(u_{n}\right)^{\frac{1}{n}}=\rho$ then
i) $\Sigma \mathrm{u}_{\mathrm{n}}$ converges if $\rho>1$
ii) diverges if $\rho>1$
b) Test the convergence of the following series :

$$
\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\cdots
$$

3. a) Show that the function

$$
f(x, y)=\left\{\begin{array}{cc}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & x^{2}+y^{2} \neq 0 \\
0, & x=0=y
\end{array}\right.
$$

is continuous at $(0,0)$
b) If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$, prove that

$$
\begin{equation*}
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\left(1-4 \operatorname{Sin}^{2} u\right) \operatorname{Sin} 2 u \tag{10}
\end{equation*}
$$

4. a) State and prove Leibnitz's theorem of nth derivative of the product of two functions.
b) Find the value of y_{n} for $x=0$ when $y=e^{a S i n^{-1} x}$
5. a) Prove that a continuous bounded function on $[a, b]$ is integrable on $[a, b]$
b) Prove that the function $f(x)$ defined as

$$
f(x)= \begin{cases}x, & \text { when } x \text { is rational } \\ -x, & \text { when } x \text { is irrational }\end{cases}
$$

is not integrable over $[\mathrm{a}, \mathrm{b}]$, but $|\mathrm{f}|$ is integrable.
6. a) Test the convergency of the following
i) $\int_{0}^{\pi / 2} \log \operatorname{Sin} x d x$
ii) $\int_{0}^{\infty} \frac{\operatorname{Sin} \mathrm{x}}{\mathrm{x}} \mathrm{dx}$
b) Evaluate:
i) $\operatorname{Lt}_{\mathrm{x} \rightarrow 0}\left(\frac{\operatorname{Sin} \mathrm{x}}{\mathrm{x}}\right)^{\frac{1}{\mathrm{x}}}$
ii) $\underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{x-\operatorname{Sin} x}{x^{3}}\right)$
7. a) Show that in the cycloid $x=a(\theta+\operatorname{Sin} \theta)$ $y=a(1-\operatorname{Cos} \theta), \rho^{2}+S^{2}=16 a^{2}$ where the are ' s ' being measured from the verex $(\theta=0)$ and ρ is the radius f curvature at any point.
b) Find the area common to the cardiode $r=a(1+\operatorname{Cos} \theta)$ and the circle $r=\frac{3}{2} a$.

