## B. E. Computer Science and Engineering Examination, 2018

(1st Year, 1st Semester, Supplemantary)

## Mathematics- I

Time: Three hours
Full Marks: 100

The figures in the margin indicate full marks
Answer Q. No. 9 and any six from Q. No.1-8.

1. (a) Let A, B,C, D be subsets of a set X. Prove that

$$
\begin{aligned}
& (\mathrm{A} \times \mathrm{C}) \backslash(\mathrm{B} \times \mathrm{D})=\{(\mathrm{A} \backslash \mathrm{~B}) \times(\mathrm{C} \backslash \mathrm{D})\} \cup \\
& \{(\mathrm{A} \cap \mathrm{~B}) \times(\mathrm{C} \backslash \mathrm{D})\} \cup\{(\mathrm{A} \backslash \mathrm{~B}) \times(\mathrm{C} \cap \mathrm{D})\} .
\end{aligned}
$$

(b) Define an equivalence relation $\rho$ on a non-empty set $S$. Examine whether $\rho$ is an equivalence relation on $S$ in the following cases :
(i) $\mathrm{S}=\mathbb{Z} \times \mathbb{Z}$ and (a,b) $\rho(\mathrm{c}, \mathrm{d}) \Leftrightarrow \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{c}$.
(ii) $\mathrm{S}=(\mathbb{Z} \times \mathbb{Z}) \backslash\{(0,0)\}$ and $(\mathrm{a}, \mathrm{b}) \rho(\mathrm{c}, \mathrm{d}) \Leftrightarrow \mathrm{ad}=\mathrm{bc} .8$
2. (a) When is a function called left invertible? Let $A, B$ be two non-empty sets and $f: \mathrm{A} \rightarrow \mathrm{B}$ be a function from A into B. Show that $f$ is left invertible if and only $f$ is injective.
(b) Let $\beta$ be a permutation on the set $\{1,2, \ldots .7\}$ such that

$$
\beta_{4}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 5 & 3 & 6 & 7
\end{array}\right) \text { then find } \beta \text {. }
$$

3. (a) Define a countable set. Prove that the every subset of the set $\mathbb{Q}$ of all rational number is countable.
(b) What is a cordinal number? Prove that the set of all real function defined on the closed unit interval has the cardinal number $2^{\mathrm{c}}$, Where c is the cardinal number of the set $\mathbb{R}$ of all real numbers.

8
4. (a) Find the truth table of $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$ 8
(b) Let $\mathrm{A}=\{1,2, \ldots . .10\}$. Condiser each of the following sentences. If it is a statement, then determine its truth value. If it a proposional function, determine its truth set.
(i) $(\forall \mathrm{x} \in \mathrm{A})(\exists \mathrm{y} \in \mathrm{A})(\mathrm{x}+\mathrm{y}<14)$. 4
(ii) $(\forall \mathrm{x} \in \mathrm{A})(\forall \mathrm{y} \in \mathrm{A})(\mathrm{x}+\mathrm{y}<14)$. 4
5. (a) Prove that the diagonals of a parallelogram bisect each other, by vector method. 8
(b) If $\vec{\alpha}=2 \vec{i}-10 \vec{j}+2 \vec{k}, \vec{\beta}=3 \vec{i}+\vec{j}+2 \vec{k}$. and $\vec{\gamma}=2 \vec{i}+\vec{j}+3 \vec{k}$.

Find the vector $\vec{\alpha} \times(\vec{\beta} \times \vec{\gamma})$ and interpret the result geometrically.

8
6. (a) Show that the points $\mathrm{A}=(1,-2,3), \mathrm{B}=(2,-3,4)$ and $C=(-2,1,0)$ are collinear, by vector method. 8
(b) Show that the vectors $2 \vec{i}-\vec{j}+\vec{k}, \vec{i}-3 \vec{j}-5 \vec{k}$ and $3 \vec{i}-4 \vec{j}+4 \vec{k}$, from the sides of a right angled triangle.
7. (a) Find the equation of the cone whose vertex is at $(1,2,3)$ and the guiding, curve is the circle

$$
x^{2}+y^{2}+z^{2}=0, \quad x+y+z=1
$$

(b) Find the equation of the cylinder whose gererating line is parallel to the $z$-axis and the guiding curve is given by, $x^{2}+y^{2}-z=0, \quad x+y+z=1$
8. (a) If the volume of a tetrahedron be 2 units and three of its vertices be $(1,1,0),(1,0,1)$ and $(2,-1,1)$, then find the locus of the fourth vertex.
(b) Find the torque about the point $(3,-1,3)$ of a force $(4 i+2 j+k)$ passing through the point $(5,2,4) . \quad 8$
9. What is the remainder when $1!+2!+3!+\ldots+99!+100$ ! is divided by 18 ?

