7. a) Evaluate:
i) $\underset{\mathrm{x} \rightarrow 0}{\mathrm{Lt}}(\cos \mathrm{x})^{\cot ^{2} \mathrm{x}}$
ii) $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x-\sin x}{x^{3}}$
b) Find the perimeter of the cardioide $r=a(1-\cos \theta)$, and show that the arc of the upper half of the curve is bisected by $\theta=\frac{2 \pi}{3}$. 7
c) Find the asymptotes of the curve

$$
(y-2 x)^{2}(y-x)-3(y-2 x)(y-x)+2(y-x)+1=0 \quad 7
$$

Bachelor of Engineering in Computer Science Engineering Examination, 2018

(1st Year, 1st Semester)

Mathematics II

Time : Three hours
Full Marks : 100

Answer any five questions.

All symbols and notations have their usual meanings.

1. a) Show that the sequence $\left\{x_{n}\right\}_{n \in N}$, where $\mathrm{x}_{\mathrm{n}}=\frac{1}{\mathrm{n}+1}+\frac{1}{\mathrm{n}+2}+\cdots+\frac{1}{2 \mathrm{n}}$ is monotonically increasing bounded.
b) Check whether the sequence $\left\{2^{n}\right\}_{n \in N}$ is a cauchy sequence or not.
c) Define limit of a sequence. Prove that a convergent sequence determines its limit uniquely.
2. a) Test the convergence of the series

$$
\begin{equation*}
\frac{1+2}{2^{3}}+\frac{1+2+3}{3^{3}}+\frac{1+2+3+4}{4^{3}}+\cdots \tag{8}
\end{equation*}
$$

b) Find the radius of convergence, and the exact interval of convergence of the power series.

$$
\begin{equation*}
1-(x-1)+\frac{(x-1)^{2}}{2}-\frac{(x-1)^{3}}{3}+\cdots \tag{6}
\end{equation*}
$$

c) Test the convergence of the series

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\log n}{\sqrt{n+1}} \tag{6}
\end{equation*}
$$

3. a) Consider the function $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}
\mathrm{y} \sin \frac{1}{\mathrm{x}}+\frac{\mathrm{xy}}{\mathrm{x}^{2}+\mathrm{y}^{2}}, & \mathrm{x} \neq 0 \\
0, & \mathrm{x}=0
\end{array}\right.
$$

Verify that $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)$ exists but neither
$\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$ nor $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists. $\quad 8$
b) Prove that the function $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x, y)=\sqrt{|x y|}$ is not differentiable at the origin, but f_{x} and f_{y} both exist at the origin. 8
c) If $z=e^{x y^{2}}, x=t \cos t, y=t \sin t$, compute $\frac{d z}{d t}$ at $t=\frac{\pi}{2}$. 4
4. a) State Taylor's theorem for a function of two variables. Apply it to find the expansion of $f(x, y)=x^{2} y+3 y-2$ in powr of $(x-1)$ and $(y+2)$.

8
b) Find the maxima and minima of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$. 6
c) If $u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, prove that

$$
\begin{equation*}
\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)^{2} u=-\frac{\sin u \cos 2 u}{4 \cos ^{3} u} \tag{6}
\end{equation*}
$$

5. a) State and prove Leibnitz's theorem of nth derivative of the product of two function.
b) Find the value of y_{n} for $x=0$ when

$$
\begin{equation*}
\mathrm{y}=\mathrm{e}^{\mathrm{aSin}^{-1} \mathrm{x}} \tag{8}
\end{equation*}
$$

c) Show that

$$
\frac{x}{1+x}<\log (1+x)<x, \text { if } x<0
$$

6. a) Prove that a bounded function $\mathrm{f}(\mathrm{x})$, having a finite number of points of discontinuity on [a, b] in integrable on $[\mathrm{a}, \mathrm{b}]$.
b) Compute the value of the integral $\int_{0}^{1} x^{2} d x$ by Riemann integral theory.
c) Prove that $\mathrm{B}(\mathrm{m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})}$.
