7. a) What is an ideal of a ring? Define a principal ideal. 3
b) Consider the ring of all integers. For two positive integers a, b show that

$$
\begin{array}{ll}
(\mathrm{a})+(\mathrm{b})=(\mathrm{d}) & \mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{~b}) \\
(\mathrm{a}) \cdot(\mathrm{b})=(\mathrm{c}) & \mathrm{c}=\operatorname{Lcm}(\mathrm{a}, \mathrm{~b})
\end{array}
$$

where (x) is the principal ideal generated by x .
8
c) Show that in a commutative ring R with identity, a proper ideal P of R is prime iff R / P is an integral domain. 9
8. a) Prove that a polynomial of degree n over a field F can have at most n roots in any extension field.
b) If p is a prime, prove that $(\mathrm{Zp},+\cdot)$ is a field. 7
c) Show that in a commutative ring R with identity, an ideal of R is maximal iff R / M is a field.

Bachelor of Engineering in Computer Science and Engineering Examination, 2018

(1st Year, 2nd Semester)
Mathematics - IVD
Time: Three hours
Full Marks : 100
(Answer any five questions)

1. a) Find the rank of the matrix

$$
\left(\begin{array}{cccc}
2 & 0 & 2 & 2 \\
3 & 4 & -1 & -9 \\
1 & 2 & 3 & 7 \\
-3 & 1 & -2 & 0
\end{array}\right) \text { reducing it to normal form. }
$$

b) Solve the following sytem of equations (if possible)

$$
\text { i) } \begin{aligned}
x+y+z+w & =0 \\
3 x+4 y-z & =0 \\
x+2 y-3 z+u & =0
\end{aligned}
$$

$$
\text { ii) } \begin{align*}
\mathrm{x}-2 \mathrm{y}+\mathrm{z}-\mathrm{w} & =-1 \\
3 \mathrm{x}-2 \mathrm{z}+2 \mathrm{w} & =-4 \\
5 \mathrm{x}-4 \mathrm{y}+\mathrm{w} & =-5
\end{align*}
$$

c) Explain with reasons whether

$$
(\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+2 \mathrm{AB}+\mathrm{B}^{2}
$$

hold for square matrices.
2. a) Find the eigen values and eigen vectors of the matrix

$$
\left(\begin{array}{ccc}
3 & -2 & 1 \\
2 & -1 & 0 \\
-2 & 2 & 0
\end{array}\right)
$$

b) State and prove Caley-Hamilton Theorem. 6
c) Define a vector space.
3. a) In a vector space $(\vee,+, \cdot)$ prove that
i) (-c$) \alpha=\mathrm{c}(-\alpha)=-(\mathrm{c} \alpha)$
ii) $\mathrm{c} \alpha=\theta \Rightarrow \mathrm{c}=0$ or $\alpha=\theta \quad \forall \alpha \in \vee, \mathrm{c} \in \mathrm{F}$. 6
b) Define the direct sum of two subspaces of a vector space.

If M and N are two subspaces of a vector space $(\vee,+, \cdot)$ then prove that $\mathrm{V}=\mathrm{M} \oplus \mathrm{N}$
c) Show that $(1,1,1),(1,2,3),(2,-1,-1)$ forms a basis of R^{3} and express $(3,4,5)$ as a linear combination of these vectors.

7
4. a) Define the basis of a vector space. Prove that any finite dimensional vector space has a basis.
b) If $\{\alpha, \beta, \gamma\}$ is a basis of a vector space V then show that $\{\alpha+\beta, \beta+\gamma, \gamma+\alpha\}$ is also a basis of V. 4
c) Find the basis and dimension of
i) $S=\left\{(x, y, z) \in R^{3}: 2 x-y+3 z=0\right\}$
ii) S is the space of all 3 rd order symmetric matrices.
5. a) Define a linearly dependent set of vectors. Prove that a set of r non-zero vectors $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\}$ is linearly dependent iff. at least one of α_{i} is a linear combination of preceeding vectors.
b) Define a group. Prove that (G, \cdot) is a group iff for any two elements $a, b \in G$ we have $a^{-1} b \in G$.
c) Show that a finite group (G, \cdot) is a cyclic group iff there exists an element $a \in G$ such that $0(a)=|G|$.
6. a) Let H be a subgroup of a finite group G . Show that
i) $|\mathrm{aH}|=|\mathrm{H}|=|\mathrm{Ha}| \forall \mathrm{a} \in \mathrm{G}$
ii) $\mathrm{O}(\mathrm{H})$ divides $\mathrm{O}(\mathrm{G})$.
b) If H and K are two subgroups of a group G then show that HK is a subgroup of G iff $\mathrm{HK}=\mathrm{KH}$.
c) Define a ring. Give an example o a commutative ring. 3

