Bachelor of Engineering in Computer Science and

 Engineering Examination, 2018
(1st Year, 2nd Semester)

Mathematics - III

Time : Three hours
Full Marks : 100
(50 marks for each part)
Use a separate Answer-Script for each part

PART - I

Answer any five questions

1. a) Define group. Let G be a group and ξ be the identify of G. Suppose that for $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{G}, \mathrm{xyz}=\xi$ holding G . Show that $\mathrm{yzx}=\xi$. Does it follow that $\mathrm{yxz}=\xi$? Justify your answer.
b) Define cyclic group. Show that even cyclic group is commutative. Is the converse true? Justify your answer.

1+2+2
2. a) Define normal subgroup of a group. Let H and k be two normal subgroups of a group G such that $\mathrm{H} \cap \mathrm{K}=\{\xi\}$. Show that $a b=$ ba for all $a \in H$ and $b \in K . \quad 2+3$
b) Define quotient group of a group. Show that the quotient group of a commutative group is also commutative. Is the converse true ? Justify your answer.
3. a) State and prove Lagrange's Theorem for group. $2+3$
b) Define centre of a group. Let G be a noncommutative group and $Z(G)$ be the centre of G. Show that $|Z(G)| \leq \frac{1}{4}|G|$.
$1+4$
4. a) State and prove first isomorphism theorem of group.

$$
2+3
$$

b) Define $\operatorname{GL}(x, \mathbb{R})$ and $\operatorname{SL}(x, \mathbb{R})$. Show that $\mathrm{GL}(\mathrm{x}, \mathbb{R}) /_{\mathrm{SL}(\mathrm{nR})} \simeq \mathbb{R}^{*}$, where $\mathbb{R}^{*}=\mathbb{R}\{0\}$, the set of non zero real numbers.
5. a) Define subring of a ring. With proper justification give an example of a ring R without identify but having a subring S with identity.
$1+4$
b) Define integral domain and field. Show that every finite integral domain is a field.
$2+3$
6. a) Define ideal of a ring. Give an example of a left ideal in a ring R which is not a right ideal of R. Also give an example of a right ideal of R which is not a left ideal R. $1+2+2$
b) Define prime ideal and maximal ideal of a commutative ring R. Show that every maximal ideal of R is a prime ideal of R.
14. a) Let U and W be two subspaces of a finite dimensional vector space V over a field F . Then prove that $\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)$.
b) When are two subspaces of a vector space said to be complement of each other? Prove that every subspace of a finite dimensional vector space possesses a complement.

Find a complement subspace of U in \mathbb{R}^{3}
where $\mathrm{U}=\mathrm{L}\{(1,2,1),(2,1,3)\}$

PART - II

Answer any five questions
 $105=50$

All questions carry equal marks.

8. a) Express the following determinant as a square of a determinant and find its value :

$$
\left|\begin{array}{lll}
a^{2}-b c & b^{2}-c a & c^{2}-a b \\
c^{2}-a b & a^{2}-b c & b^{2}-c a \\
b^{2}-c a & c^{2}-a b & a^{2}-b c
\end{array}\right|
$$

b) Show that

$$
\left|\begin{array}{ccc}
(b+c)^{2} & c^{2} & b^{2} \\
c^{2} & (c+a)^{2} & a^{2} \\
b^{2} & a^{2} & (a+b)^{2}
\end{array}\right|=2(b c+c a+a b)^{3} .
$$

9. a) Find the inverse of the following matrix :

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 1 \\
2 & -1 & 1
\end{array}\right]
$$

and hence solve the set of equations

$$
\begin{aligned}
& x-y+2 z=1 \\
& x+y+z=2 \\
& 2 x-y+z=5
\end{aligned}
$$

b) If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, show that $A^{3}=A^{-1}$
10. a) Define rank of a matrix. Determine the rank of the following matrix :

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
2 & 4 & 4 & -6 \\
0 & 0 & 5 & -2 \\
3 & 6 & 8 & -1
\end{array}\right]
$$

b) Find the eigen values and eigen vectors of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

and verify that for a symmetric matrix, with unequal eigen values the eigen vectors are mutually orthogonal. 4+6
11. a) State and prove Cayley-Hamilton Theorem.
b) Find the characteristic equation of the matrix. $\mathrm{A}=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence compute A^{-1}. Also find the matrix represented by

$$
\mathrm{A}^{8}-5 \mathrm{~A}^{7}+7 \mathrm{~A}^{6}-3 \mathrm{~A}^{5}+\mathrm{A}^{4}-5 \mathrm{~A}^{3}+8 \mathrm{~A}^{2}-2 \mathrm{~A}+\mathrm{I} . \quad 5+5
$$

12. a) Define vector space and give one example. Let S be the set of all solutions of the system of equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=0, a_{i j} \in \mathbb{R} .
\end{aligned}
$$

Show that S is a subspace of \mathbb{R}^{3}. Also, find its dimension.
b) In a vector space V over a field F , show that
i) $\mathrm{O} \alpha=\theta$ for all $\alpha \in \mathrm{V}$
ii) $\mathrm{C} \theta=\theta$ for all $\mathrm{C} \in \mathrm{F}$
iii) $(-1) \alpha=-\alpha$;
iv) $\mathrm{C} \alpha=\theta \Rightarrow \mathrm{C}=\mathrm{O}$ or $\alpha=\theta$ 6+4
13. a) If U, W be two subspaces of a vector space V over a field F , then prove that their linear sum $\mathrm{U}+\mathrm{W}$ form a subspace of V and is the smallest subspace of V containing the subspaces U and W .
b) Prove that the set $S=\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis set for the vector space \mathbb{R}^{3}. Show that the vector $(1,1,1)$ may replace any one of the vectors of the set S to form a new basis of \mathbb{R}^{3}, but the same is not true for the vector (3, 1, 2).
7. a) Let R be a commutative ring with identity. Show that $\left.R[x]\right|_{\langle x\rangle} \simeq R$. Hence show that $\langle x\rangle$ is a prime ideal of $\mathbb{Z}[x]$ but not a maximal ideal of $\mathbb{Z}[x]$.
b) Define field extension. Let F / K be a field extension. Define the degree or dimension of F / K. Find $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]$ and $[\mathbb{C}: \mathbb{R}]$.

