Form A: Paper-setting Blank

Ref. No. ... EX/CE/5/T/403/2018(S)(OLD)

......Bachelor of Civil Engineering (Civil Engineering) 4th Year ... EXAMINATION, 2018(OLD) (1st / 2nd Semester / Repeat / Supplementary / Annual / Bi - Annual)

SUBJECT Design of Metal Structures - I. I. (Name in full)

PAPERXX.....

Full Marks 100 (50 marks for part **H)** T

Time: Two hours/Three hours/Four hours/Six hours

Use a separate Answer-Script for each part

No. of Questions	•		PART T			Marks	
	Assume reasonab		ven, IS 800, IS the examinatio		nd Book are		
1) a)	Answer any two questions A single angle (100×100×8) is connected to the gusset plate at the ends with 4 nos 20 φ bolts to transfer tensile force. Determine the design tensile strength of the angle assuming f_y =250MPa and f_u =410MPa. Use Limit State Method of design.						
b)	A tie member of truss consisting an angle section ISA 65×65×8 of Fe410 grade is welded to 8mm gusset plate. Design a weld to transmit a factored load of 250kN. Assume shop weld.						
2.a)	Design a double angle 255kN. The length of placed back to back and the control of	the strut is 3.25	m between the	intersections. Th	e two angles are	10	
b)	The member forces in the joint using M16 be	a joint (Fig. 1) o	of a roof truss is the thickness of	given in the tab gusset is 8mm.	le below. Design	15	
	A Fig. 1						
	Member	OA(Rafter)	OD(Rafter)	OC(Inclined)	OB(Vertical)		
	Force from DL and LL combination	190kN(C)	160kN(C)	24kN(T)	35kN(C)		
· · · · · · · · · · · · · · · · · · ·	Section provided	2 nos 65×65×8	2 nos 65×65×8	1 nos · 60×60×8	1 nos 60×60×8		
					1		

	Design a bolted torsion-shear bracketed connection to carry a factored vertical load of 280kN. The load is acting at a distance 525mm from the centre of the column. The cross section of the column is ISMB450@72.4kg/m .								
	b)	b) Calculate design wind pressure, external and internal pressure coefficients as per							
	IS:875, part-3 on the wall of the factory shed with the following dimensions:								
		i) LocationKolkata							
		ii) Length48m iii) Span of truss/width of building25m iv) Height of eves from GL12m v) Pitch1/5							
	,								
			.:						

Form A	L	:	Paper-setting	Blank
--------	---	---	---------------	-------

Page 1 of 1

Ref. No. Ex/CE/5/T/403/2018(S) (OLD)

..B.E.Civil Engineering [Evening] 4th Year 1st Semester (Supplementary)[OLD].. EXAMINATION, 2018

SUBJECT DESIGN OF METAL STRUCTURES-1.......

PAPER	
+ * ** TI	

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of					
Questions	PART II				
	[Use of I.S. 800 and SP-6(1) are allowed in the examination hall.] (Consider Fe410 steel i.e. 'yield stress' of steel = 250MPa)				
	Answer any TWO questions				
1.	A steel floor beam is simply supported over a span of 4.0m. It is subjected to uniformly distributed load of intensity 30kN/m (D.L.+L.L.) acting over entire span of the beam. Design a rolled steel I-section (ISMB section) for this beam if the compression flange of the beam is laterally unrestrained / laterally unsupported along its length. Consider stiff bearing length as 125mm. Show all checks. Assume any reasonable data, if required.	25			
	Design a rolled steel channel section (ISMC section), under 'dead load, live load and wind load (suction)' combination, for a purlin member in an industrial shed having the following data: a) Angle of truss = 23.0°; b) Spacing of truss = 4.5 m c/c; c) Span of truss = 25.0 m; d) Spacing of purlins = 1.65 m c/c; e) Net intensity of wind pressure = 1.75 kN/m²; f) Weight of galvanized sheet = 150 N/m², g) Intensity of live load = 0.5 kN/m². Assume any reasonable data, if required.	25			
	A column made of ISMB 500 @ 86.9 kg/m is hinged at both the ends. Its effective length is 4.5m. It is subjected to factored axial compressive load of 1200kN and a factored moment of 70kNm about its major axis at both the ends. Check whether the column section is safe or not.	25			
t i p	An ISMB 550 @103.7kg/m has been used as a column of effective length 5.5m. Calculate the load carrying capacity (P_d) of the column. Design a suitable 'bolted / welded gusseted base plate' for the above mentioned column if subjected to maximum axial load as calculated above. The base plate is to rest on a concrete plate that the safe bearing capacity of 9.0MPa. Assume any reasonable data, if required only on the details of the column with base-plate. Use 24mm diameter connection.	25			
	===END===				