Form A: Paper-setting Blank

Ref. No. ... EX/CE/5/T/403/2018(Old)

SUBJECTDesign of Metal Structures -I
(Name in full)

Full Marks 100 (50 marks for part I)

Time: Two hours/Three hours/Four hours/Six hours

Use a separate Answer-Script for each part

No. of Questions	DADGIX	Most
	PART I Assume reasonable data if not given, IS 800, IS875, Section Hand Book are allowed in the examination hall	Marks
1)	Answer any two questions Calculate nodal wind forces on the truss shown in Fig. 1 and the wind pressure on the walls as per IS:875, part-III of the factory shed with the following dimensions:	25
	 i) LocationDelhi ii) Span of truss20m iii) Spacing of truss3.5m iv) Number of truss8 v) Height of eves from GL10m 	
2.a)	A tie member of truss consisting an angle section ISA 60×60×6 of Fe410 grade is welded to 8mm gusset plate. Design a weld to transmit a factored load of 160kN. Assume shop weld.	10
b)	Design a bolted torsion-shear bracketed connection to carry a factored vertical load of 250kN. The load is acting at a distance 350mm from the centre of the column. The cross section of the column is ISMB450@72.4kg/m .	15
3)	The forces in the member PQ of the truss as shown in Fig. 1 are as follows:	25
	Member PQ DL LL WL 115 kN (T) 90 kN (T) 245 kN (C)	
	Design the member using double angles and calculate the number of bolts. Assume that the longitudinal members are placed at alternative nodes. Use Limit State Method of design.	

.......B.C.E.[Evening] 4th Year 1st Semester [OLD]..... EXAMINATION, 2018

SUBJECT Design of Metal Structures - I.......

PAPER

ime: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

o. of	The solution cach part	
estions	PART II	Mark
	[Use of I.S. 800 and SP-6(1) are allowed in the examination hall.] (Consider Fe410 steel i.e. 'yield stress' of steel = 250MPa)	
ĺ	Answer any TWO questions	
1.	A steel floor beam is simply supported over a span of 5.0m. It is subjected to uniformly distributed load of intensity 40kN/m [15kN/m (D.L.) and 25kN/m (L.L.)] acting over its entire length. Design a rolled steel I-section (ISMB section) for this beam if the compression flange of the beam is laterally unrestrained / laterally unsupported along its length. Consider stiff bearing length as 150mm. Show all checks. Assume any reasonable data, if required.	25
	Design a rolled steel channel section (ISMC section), under 'dead load and wind load (suction)' combination, for a purlin member in an industrial shed having the following data: a) Angle of truss = 20.0°; b) Spacing of truss = 4.0 m c/c; c) Span of truss = 15.0 m; d) Spacing of purlins = 1.4 m c/c; e) Net intensity of wind pressure = 1.6 kN/m²; f) Weight of galvanized sheet = 150 N/m², g) Intensity of live load = 0.7 kN/m². Also check whether the section is safe under 'dead load and wind load (thrust)' combination. Assume any reasonable data, if required.	25
3.	A column made of ISMB 600 @122.6kg/m is hinged at both the ends. Its effective length is 5.0m. It is subjected to factored axial compressive load of 1000kN and a factored moment of 50kNm about its major axis at both the ends. Check whether the column section is safe or not.	25
b it p	An ISMB 500 @ 86.9 kg/m has been used as a column of effective length 3.5m. Calculate the load carrying capacity (P_d) of the column. Design a suitable 'bolted / welded gusseted base plate' for the above mentioned column if subjected to maximum axial load as calculated above. The base plate is to rest on a concrete edestal having the safe bearing capacity of 9.0MPa. Assume any reasonable data, if required that a neat sketch to show the details of the column with base-plate. Use 24mm diameter colls of grade 4.6 having $A_{nb} = 353 \text{mm}^2$ for bolted connection and 'shop weld' for welded connection.	25
	===END===	