B. CIVIL ENGG.(EVENING) 4ND YEAR 1ST SEM. EXAM. 2018(old) (1st Semester / Repeat / Supplementary / Annual / Bianual)

SUBJECT: THEORY OF STRUCTURE III (Name in full)

Time: Two hours/Three hours/Four hours/Six hours

Full Marks 100 (full part)

No. of Question		Mark
Question		iviaik
1	i) Explain 'Flexibility Matrix' & 'Stiffness Matrix'.	
	ii) A cantilever beam AB having length L is subjected to force P1 (vertical force) & p2 (moment) at free end. The corresponding displacement is denoted by D1 & D2. Proof that the multiplication of flexibility matrix' & stiffness matrix is unit matrix.	5+10+1 =25
	iii) Determine the component of reactions at A & E and shape for the cable shown in Fig-1 for which dip at B is known.	
	A	
	5M	
	30 KN 50 KN 20 KN	
2	 State the Muller Breslau's principal & explain its use for obtaining the I.L. for statically indeterminate structure. 	7+6+5+ 7=25.
•	b) A propped cantilever beam AB of span 'L'.i) Determine the equation for I.L. for reactions at B (propped support) and A.	
	ii) Draw the I.L for B.M. at Section C at a distance 'a' from support B.	2
,	iii) Find out maximum reaction at B and A due to wheels load 5t and 10t spaced 1m apart, passage from A to B.	

