B. CIVIL ENGG.(EVENING) 2ND YEAR 1ST SEM. EXAM. 2018(old) (1st-Semester/Repeat/Supplementary/Annual/Bianual)

SUBJECT: COMPUTER AIDED ANALYSIS & PROGRAM.

Time: Two hours/Three hours/Four hours/Six hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part No. of Marks PART-1 Question What will be the printed output, at the end of the following program segment?

a) # include <stdio.h> 2 int main () int k=3; int *m; m=&k;printf("%u\n",&k); printf("%u\n",m); printf("%u\n",&k); printf("%d\n",*(&k)); $printf("%d\n",*m);$ return 0; Let address of i: 66524 and j: 66522. b) # include <stdio.h> # include <string.h> int main () 1 char arr []="good day"; arr=strupr(arr); printf("%c\n",arr); return 0;

18		
No. of Question		Marks
2	Write short notes on any three of the following.	
	a) String variable.	3X4=12
	b) Use of pointer in C program	
	c) Structure type Variable.	
	d) Difference between While loop & Do-While loop	
	Answer any five questions.	
3	a) What is recursive function? Write a C program to obtain the factorial of given	7x5=35
J	integer number using recursive function.	<u>.</u> .
	b) Write a C program, to add Matrices [A] and transpose of Matrices [B], both of size (nxn),	
	and store the result in a separate matrix [C].	
	c) Write a C program to find out value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x dx$ using Trapezium rule. Given no. of	
	division (k) as an input. d) Write a C program to the sum of following series for the first N terms, using function	
	d) Write a C program to the sum of following series for the first N terms, using subprogram.	
	$y = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots$	
	2! 4! 6!	-]
		•
	e) Create a structure to specify data about employee. The data to be stored its name, Age,	
	Basic pay and ID no. Assumed maximum 100 no employee. Write a C program to print the details of an employee, if give an ID no. as input.	
	f) Write a C program, to find biggest value from diagonal element of NxN matrixes as	
	input.	
		* -
1		

Use a separate Answer-Script for each part

No. of		<u> </u>		
questions	Part I j	Marks		
.Answer any Five Questions.				
1.	a) Using three-point Gauss quadrature rule, estimate the integral.	7		
	$\int_{3}^{6} (5x^2 + 4x + 2) dx$	· ·		
	Also, find the absolute relative true error.			
	b) Use the Trapezoidal rule with no. of segments (n) = 4, evaluate the integral. $\int_{2}^{6} (x^{3} + 2x - 1) dx$	3.		
2	a) Derive Composite Simpson's one-third's rule using the first three terms of Newton-Gregory forward formula.	8		
	b) What is the basic difference between Simpson's one-third rule and Gauss quadrature rule?	2		
3.	Using polynomial method, determine the Eigen values and corresponding Eigen vectors for the matrix	10		
	$A = \begin{bmatrix} 4 & 6 & 10 \\ 3 & 10 & 13 \\ -2 & -6 & -8 \end{bmatrix}$			
4.	a) Define Characteristic polynomial.	2		
	b) Find the Eigen values and corresponding Eigen vectors using power and inverse power method, using two iterations, for the matrix	8		
	$B = \begin{bmatrix} 4 & 5 \\ 6 & 5 \end{bmatrix}$			

No. of questions	Part II	Marks
5.	a) Write an algorithm to compute the value of a definite integral using Trapezoidal rule.	4
	b) Derive the finite difference equation for $\frac{dy}{dx} = \frac{d^2y}{dx^2}$.	4
	c) What is the basic difference between an initial-value problem and a boundary-value problem?	2
6.	Compute the deflection at mid-point and quarter points of the beam shown in below using finite difference method. 8.0 KN/m	10
7.	Find the deflection for the cantilever beam at 3.00m, 6.00m, 9.00m and 12.00m the fixed end using finite difference method.	10
	6.00 m 777777 6.0 KN	
	x EI	٠.
	12.00 m	

i i