BACHELOR OF CIVIL ENGINEERING (EVENING) EXAMINATION, 2018 (1st Year, 1st Semester, Old Syllabus)

Mathematics - I

Time: Three hours Full Marks: 100

Answer any **six** questions. Four marks are reserved for neatness. (Notations have their usual meanings)

Solve the following differential equations: 4x4

(a)
$$\frac{dy}{dx} = (4x + y + 1)^2$$

(b)
$$\frac{dy}{dx} - x \tan(y - x) = 1$$

(c)
$$ydx - xdy = \sqrt{x^2 + y^2} dx$$

(d)
$$(x^2 - y^2)dx - xydy = 0$$

2. Solve the following differential equations: 4x4

(a)
$$\frac{dy}{dx} = \frac{x^2 - ay}{ax - y^2}$$

(b)
$$y \sin^2 x dx - (1 + y^2 + \cos^2 x) dy$$

(c)
$$ye^{xy}dx + (xe^{xy} + 2y)dy = 0$$

(d)
$$(\sec x \tan x \tan y - e^x)dx + \sec x \sec^2 y dy = 0$$
 (Turn over)

3. Solve the following differential equations: 4x4

(a)
$$4xydx + (x^2+1) = 0$$

(b)
$$\left(x \tan \frac{y}{x} + y\right) dx - x dy = 0$$

(c)
$$(y + \sqrt{x^2 + y^2}) dx - xdy = 0$$

(d)
$$(x^2 - 3y^2)dx + 2xydy = 0$$

4. Solve the following differential equations: 8+8

(a)
$$(D^2 - 5D + 6)y(x) = x^3e^{2x}$$

(b)
$$(x^2D^2 - xD - 3)y(x) = x^2 \log x$$

5. (a) Prove that

Cosx =
$$J_0(x) - 2J_2(x) + 2J_4^{(x)...}$$

and Sinx = $2J_1(x) - 2J_3(x) + 2J_5^{(x)...}$

(b) Prove that

$$J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right)$$

6. Solve: 5+5+6

(a) L [Sin 5t Cos 3t]

(b)
$$L^{-1} \left[\frac{1}{s(x^2 + 9)} \right]$$

(c) y''(t) - 2y'(t) - 8y(t) = 0 subject to the initial conditions y(0) = 3 and y'(0) = 6.

7. Evaluate: 4x4

— X —

(a) L [sin 2t cos 3t]

(b)
$$L^{-1} \left[\frac{s}{(s^2+1)(s+1)^2} \right]$$

(c)
$$L^{-1} \left[\frac{s+8}{(s^2+4s+5)} \right]$$

(d) $L[e^{3t} \cos 5t \sin 3t]$