B.E. CIVIL ENGINEERING (PART TIME) FIRST YEAR FIRST SEMESTER - 2018

FLUID MECHANICS II

	Time: Three hours (Answer any FIVE	questions)	Marks: 100	
D	Different parts of the same question should be an usual meanings unless otherwise mentioned. A	<u>iswered together</u> . All symbols Issume any relevant data if n	s carry their necessary.	
1.	1. a) Derive an expression for the discharge throu	gh an orifice meter.		8
	b) A Venturimeter of 15 cm diameter is inst	alled in pipe of 30 cm dian	neter through	
	which an oil of SG 0.8 is flowing. The	e pressure difference measi	ured using a	8
	differential mercury manometer is 50 cm	n. Calculate the discharge v	vhen the co-	
	efficient of discharge of the meter is 0.96.			
	c) What are the differences between a Notch ar	nd weir?		4
2.	 a) Derive the expression for the loss of head or pipe. 	f a viscous fluid flowing thro	ugh a circular	12
	b) An oil of viscosity 0.1Ns/m ² and SG 0.8 is t	flowing through a circular pip	e of diameter	
	50 mm and length 100 m. Calculate the pr	essure drop in a length of 10	00 m and the	8
	shear stress at the pipe wall if the discharge	through the pipe is 10 litres/s.	,	
3.	3. a) What are the different losses in pipe flow?			5
	b) Derive the expression for the head loss due t	o sudden enlargement.		8
	c) A 300 mm diameter pipe reduces in diameter	er abruptly to 100 mm diame	ter. Calculate	
	the head loss across the contraction if the	discharge through the pipe	is 40 litres/s.	
	Assume co-efficient of contraction as 0.6.			7
4.	4. a) Derive the condition for the maximum trans	smission of power through a	pipe. What is	8
	the corresponding transmission efficiency?			
	b) What do you mean by open channel flow	? Derive the expression for	the discharge	8
	through an open channel by Chezy's formula	a.		
	c) What do you mean by most economic chann	el?		4

5.	a) How water turbines are classified?	4
	b) Draw a schematic layout of a hydroelectric power plant with its different components.	8.
	c) A Pelton wheel of mean bucket diameter 1 m is running at a speed of 1000 rpm under	
	a head of 700 m. Determine the power developed and hydraulic efficiency of the	8
	wheel when discharge is 110 litters per second. Bucket deflects at 165 Degree.	
6.	a) Draw a schematic diagram of a centrifugal pump with its major components. Briefly	10
	state the functions of different components.	
	b) Define the specific speed of a pump. Derive the expression for the specific speed of a	6
	pump.	
	c) Draw and explain the performance characteristics curve of a centrifugal pump.	4
7.	Write short notes on: (any FOUR) 4 X 5	20
	a) Pitot tube	
	b) Moody's diagram	
	c) Equivalent pipe	
	d) Draft tube	
	e) Hydraulic jump	