B.C.E Examination ,2018

3rd year, 2nd semester

ref Ex/CE/T/325/2018 (Old)

Design of Metal structures-I

Time 3 hours

Full Marks 100

Use separate answer script for each part

(50 marks for each part)

Part -1

Answer any two questions

Assume reasonable values of any data if required

IS 800, IS-875 and SP-6 are allowed in the examination hall

Q 1 Design member forces of a rafter member in a roof truss of a factory shed are as follows:

Compressive force (factored) = 300 KN (DL+LL)

Tensile force (Factored)

= 260 KN (DL + WL)

Design the member using double angle section. Nodal distance of the rafter member is 1.75 m. Assume weld connection. Use limit state method of design.

- Q 2 (a) What are the advantages of HFSG bolt over Black bolt?
 - (b) Explain with diagram "BLOCK SHEAR FAILURE"
 - (c) Determine the maximum d required for the bracket as shown in Fig Q 2 based on connection design . Size of the fillet weld is 6mm (shop)

 3+2+ 20
- Q3. A 20 m X60m factory shed is to be constructed at Jalpaiguri. The steel roof trusses are to be used for roofing on the concrete columns. The spacing of the roof truss is 5 m and span of the truss is 20m. Column height above GL is 5 m. Galvanised corrugated iron sheet will be used. Maximum spacing of the purlin is 1.8m. Propose a suitable type of roof truss and calculate the dead load and live load acting at the nodal point for the design.

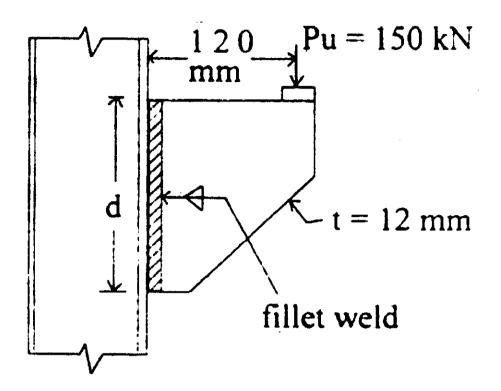


Fig Q 2

Page 1	of 1
--------	------

Ref. No. Ex/CE/T/325/2018(OLD)

......B..E. Civil Engineering 3rd Year 2nd Semester (OLD)..... EXAMINATION, 2018

SUBJECT Design of Metal Structures - I
(Name in full)

PAPER

Full Marks 100 (50 marks for each part)

Time: Three hours

Use a separate Answer-Script for each part

No. of Questions	PART II	Marks
	[Use of I.S. 800 and SP-6(1) are allowed in the examination hall.] (Consider Fe410 steel i.e. 'yield stress' of steel = 250MPa)	
	Answer any TWO questions	
1.	A steel floor beam is simply supported over a span of 6m. It is subjected to uniformly distributed load of intensity 40kN/m acting over its entire length and a concentrated load of magnitude 110kN acting at its mid-span. Design a rolled steel I-section for this beam if the compression flange of the beam is 'not laterally supported or restrained' along its length. Show all checks. Assume any reasonable data, if required.	[25]
2.	Design a rolled steel channel section, under 'dead load and wind load (thrust)' combination, for a purlin member in an industrial shed having the following data: Spacing of truss = 4m c/c Span of truss = 20.0 m Spacing of purlins = 1.5m c/c Angle of truss = 21.5° Net intensity of wind pressure = 1.7 KN/m² Weight of galvanized sheet = 150 N/m² Assume any reasonable data, if required.	[25]
3.	A column made of ISMB 500 @ 86.9 kg/m is hinged at both the ends. Its effective length is 5.0m. It is subjected to factored axial compressive load of 650kKN and a factored moment of 80kNm about its major axis at both the ends. Check whether the column section is safe or not.	[25]
4.	a) Design a column with rolled steel I-section to support a factored axial load of 1300 kN. The column has an effective length of 5.5m with respect to both major and minor axis of the cross-section. b) Design a suitable base plate for the above mentioned column. The base plate is to rest on a concrete pedestal having the safe bearing capacity of 9.0N/mm ² . Assume any reasonable data, if required. Draw a neat sketch to show the details of the column with base-plate.	[25]
	=== E N D ===	