Ref. No. – EX/CE/T/311/2018(S)(OLD)

B.E. Civil Engineering Third Year ,First Semester Supplementary Examination, 2018 (Old)

SUBJECT – Higher Surveying Full Marks 100

Time: Three hours

(50 marks for each part)

Use a separate Answer-Script for each part

PART I

Answer any two questions

<u> </u>		
1 a	Assuming radius of earth = 6400 km calculate the geodetic area enclosed within the spherical triangle between places A (60° 50′N, 20°)	15
	38' E), B (25° 12'N, 36° 14' E) and C (62° 18' N, 27° 31' E).	
		10
l lb	The coordinates of places P and Q are given below. P: latitude N 40 ⁰ 20 ⁷ longitude W 5 ⁰ 41 ⁷	10
	Q: latitude N 30 ^o 18 longitude E 5 ^o 25	
	Q. Intitude 14 30 To Tongitude 25 25	
	What is the "convergence' of meridian between the above two places?	
		17
2 a	Draw a neat diagram of the celestial sphere showing:	17
	i) Zenith, nadir, celestial horizon	
	ii) Celestial poles and equator	
	iii) Ecliptic	
	iv) First point of Aries and first point of Libra	
	v) Position of the sun	
	vi) Position of a star, RA 36 ^h 16 ^m and declination 20 ⁰ N.	
	Given data:	
	i) Place of observation, 42° N, 20° E	
	ii) Time and date of observation, 11 ^h LMT on the 7 th	
	September, 2010.	
	iii) Equation of time = $+2^{m} 36^{s}$	
	iv)	
b	Explain the concepts of solar time, mean solar time and sidereal time	8.
	Which one among solar day and sidereal day is longer and why?	
		0
3a	Explain the following terms with sketches - hour angle, right ascension	8
	, GST at GMN, Napier's rules, first point of Aries.	1.77
	04	17
b	A circumpolar star of RA 11 h, declination 750 50N is observed at	
	eastern elongation from a place of latitude = 55 °N and longitude =	
	92 W. Whole circle bearing of the star with respect to a reference =	
	120 ° Calculate the LMT of elongation, expected altitude and azimuth	-
	of reference. Given that GST at GMM = 10 ^h .	

Ref. No.: EX/CE/T/311/2018 (S) (OLD)

B. E. CIVIL ENGINEERING 3RD YEAR 1ST SEMESTER SUPPLEMENTARY EXAMINATION 2018 (OLD)

HIGHER SURVEYING

Time: 3 Hours

Full Marks: 100

Part II

(50 marks for each part)

Use Separate Answer scripts for each Part Answer ALL Questions

- 1. Write short notes on the following
 - a. Normal Tension
 - b. Reduction to Centre
 - c. Extension of Base
 - d. Least Square Theory under Conditional Extremum
- 2. In a triangulation survey, the altitudes of two stations A and B, 110 km apart, are respectively 440 m and 725 m. The elevation of a peak P situated at 65 km from A has an elevation of 410 m. Ascertain if A and B are intervisible, and if necessary, find by how much signal at B should be raised so that the line of sight nowhere be less than 3 m above the surface of ground. Take earth's mean radius as 6400 km and the mean coefficient of refraction as 0.07.
- 3. A reciprocal levelling operation is carried out in between two stations A & B which are 4.5 Km apart. The observations noted are H.I. at A = 1.5m, H.I. at B = 1.55m, H.S. at A = 3m, H.S. at B = 2.6m, Observed Angle of Elevation from A to B = 02°39'49" and Observed Angle of Depression from B to A = 02°39'56". Considering radius of earth as 6400Km find the Coefficient of refraction and Level difference between A and B.
- 4. The angles measured from a central station 'O' to the four stations A, B, C and D by the method of repetition are AOB = 67°14'32", BOC = 75°36'21", COD = 59°56'02", DOA = 157°13'02". Using the principle of least square with conditional extremum, determine the most probable value of the angles.
- 5. The directions observed from a satellite station S, 70 m from a triangulation station C, to the triangulation station A, B, and C are 0°00'00", 71°32'54" and 301°16'15", respectively. The lengths of AB, and AC are 16.5 km and 25.0 km, respectively. Deduce the angle ACB.

1×5

10

10

4

6