(b) $\sum \frac{1}{(2 n-1)^{2}}=\frac{n^{2}}{8}$
12. Obtain the half range cosine and sine series for $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in the interval $0 \leq \mathrm{x} \leq \pi$.

BACHELOR OF POWER ENGINEERING EXAMINATION, 2019

(1st Year, 1st Semester)
Mathematics - II Q
Time : Three hours
Full Marks : 100
Notations/Symbols have their usual meaning

Answer any ten questions.

1. (a) Find the real values of x, y so that $-3+i x^{2} y$ and $x^{2}+y+4 i$ may represent complex conjugate numbers.
(b) Simplify : $\frac{(\cos 3 \theta+i \sin 3 \theta)^{4}(\cos 4 \theta-i \sin 4 \theta)^{5}}{(\cos 4 \theta+i \sin 4 \theta)^{3}(\cos 5 \theta+i \sin 5 \theta)^{-4}}$
(c) If $2 \cos \theta=x+\frac{1}{x}$, provethat
$2 \cos \mathrm{n} x=\mathrm{x}^{\mathrm{n}}+\frac{1}{\mathrm{x}^{\mathrm{n}}}$
2. (a) Show that

$$
\sin ^{8} \theta=\frac{1}{2^{7}}(\cos 8 \theta-8 \cos 6 \theta+28 \cos 4 \theta-56 \cos 2 \theta+35)
$$

(b) Prove that

$$
\left|\begin{array}{cccc}
1+a & 1 & 1 & 1 \\
1 & 1+b & 1 & 1 \\
1 & 1 & 1+c & 1 \\
1 & 1 & 1 & 1+d
\end{array}\right|=a b c d\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)
$$

3. (a) If $a+b+c=0$, solve $\left|\begin{array}{ccc}a-x & c & b \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$
(b) Express the following matrix as the sum of a symmetric and a skew-symmetric matrix :

$$
\left[\begin{array}{ccc}
3 & -2 & 6 \\
2 & 7 & -1 \\
5 & 4 & 0
\end{array}\right]
$$

(c) Show that the reciprocal of the product of two matrices is the product of their reciprocals taken in the reverse order.
$4+3+3$
9. Obtain the various possible solutions of the onedimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

by the mathod of separation of variables. Hence identify the most appropriate solution (with justification).
10. Obtain the solution of the one-dimensional heat conduction equation

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq L, t>0
$$

satisfying the conditions :
$u(0, t)=0 \& u(L, t)=0$ for $t>0$ and $u(x, o)=f(x)$, $0 \leq \mathrm{x} \leq \mathrm{L}$.
11. Find the Fourier series expansion of $f(x)=x^{2}$ in the interval $-\pi \leq \mathrm{x} \leq \pi$. Hence deduce the following results :
(a) $\sum \frac{1}{n^{2}}=\frac{n^{2}}{6}$
(b) Test the convergence of the series

$$
\sum\left(1+\frac{1}{\sqrt{n}}\right)^{-n^{3 / 2}}
$$

7. (a) Form a PDE by eliminating the arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}+z^{2}=c^{2}$.
(b) Form a PDE by eliminating the arbitrary function f from $f\left(x^{2}+y^{2}, z-x y\right)=0$
(c) Solve : $\frac{\partial^{2} z}{\partial x^{2}}+z=0$, given that when $\mathrm{x}=0, \mathrm{z}=\mathrm{e}^{\mathrm{y}}$ and $\frac{\partial z}{\partial x}=1$. $3+4+3$
8. Solve the following PDEs :
(a) $(z-y) p+(x-z) q=y-x$
(b) $x p-y q=y^{2}-x^{2}$
(c) $x(y-z) p+y(z-x) q=z(x-y)$
$3+4+3$
9. (a)

If $A=\left[\begin{array}{lll}3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4\end{array}\right]$,
find $\operatorname{adj} \mathrm{A}$ and A^{-1} verify that $\mathrm{AA}^{-1}=\mathrm{I}$.
(b) Test for convergence of the series $\sum_{n=1}^{\infty} \frac{\mathrm{n}!}{\left(\mathrm{n}^{\mathrm{n}}\right)^{2}}$. $7+3$
5. (a) Solve the following equations by Cramer's rule : $x+3 y+6 z=2,3 x-y+4 z=9, x-4 y+2 z=7$
(b) Solve the following system of equations by the matrix method :

$$
x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6 .
$$

6. (a) Show that the series $1+r+r^{2}+r^{3}+\ldots . . \infty$
(i) converges if $|\mathrm{r}|<1$,
(ii) diverges if $\mathrm{r} \geq 1$, and
(iii) oscillates if $\mathrm{r} \leq-1$.
