(b) Show that the straight lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect. Find the point of intersection also.
11. (a) Find the equation of a sphere which passes through origin and intercepts lengths a, b and c on the axes respectively.
(b) Find the equation of the sphere which passes through the circle

$$
x^{2}+y^{2}+z^{2}=25, x+2 y+3 z=6
$$

and whose centre lines on the plane $2 x+4 y-3 z=2$.
12. (a) Find the solution of the following wave equation described by

$$
\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to boundary conditions $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(5, \mathrm{t})=0$ and initial conditions $u(x, 0)=0,\left(\frac{\partial u}{\partial t}\right)_{t=0}=5 \sin \pi x$.

Ex:/PE/MATH/T/122/2019(OLD)

BACHELOR OF POWER ENGINEERING EXAMINATION, 2019

(1st Year, 2nd Semester, Old Syllabus)

Mathematics - III Q

Time : Three hours
Full Marks : 100
Symbols/Notations have there usual meanings.
Answer any ten questions.

1. (a) Find the curvature and torsion for a space curve $\vec{r}=a \cos t \hat{i}+a \sin t \hat{j}+b t \hat{k}$ at any point of it.
(b) If $\vec{R}=x^{2} y z \hat{i}+2 x y z \hat{j}+y z^{2} \hat{k}$, find $\frac{\partial \vec{R}}{\partial x}, \frac{\partial \vec{R}}{\partial y} \& \frac{\partial \vec{R}}{\partial z} .6+4$
2. (a) If $\vec{V}=(x+3 y) \hat{i}+(y-2 z) \hat{j}+(9-2 z) \hat{k}$, check whether vector field $\overrightarrow{\mathrm{V}}$ is solenoidal or irrotational?
(b) If $\varphi=x^{2} y^{3} z^{4}$, find directional derivative of φ at $(2,1,1)$ in the direction of $3 \hat{i}+6 \hat{j}+2 \hat{k}$.
3. (a) If $\vec{a}=t \hat{i}-t^{2} \hat{j}+(t-1) \hat{k}$ and $\vec{b}=2 t^{2} \hat{i}+6 t \hat{k}$ evaluate $\int_{0}^{2}(\vec{a} \cdot \vec{b}) d t$ and $\int_{0}^{2}(\vec{a} \times \vec{b}) d t$.
(b) Solve the differential equation $y=p x+q / p$, where

$$
p=\frac{d y}{d x} \text { and interpret the results. }
$$

4. Verify Stokes' theorem for $\vec{F}=z \hat{i}+x \hat{j}+y \hat{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
5. Solve the following differential equations :
(i) $(x+y+1) d x-(2 x+2 y+1) d y=0$
(ii) $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$
6. Solve :
(a) $\left(D^{2}+4\right) y=\sin 3 x$
(b) $\left(D^{2}-4 D+3\right) y=e^{3 x}$
7. (a) If the curves $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect at right angles, then prove that $\mathrm{a}-\mathrm{b}=\mathrm{c}-\mathrm{d}$.
(b) If the normal to the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ at any point makes an angle φ with the positive direction of the x-axis, then prove that, the equation of the normal is $\mathrm{y} \cos \varphi-\mathrm{x} \sin \varphi=\mathrm{a} \cos 2 \varphi$.

5+5
8. (a) Prove that the acute angle between two diagonals of a cube is $\operatorname{Cos}^{-1}\left(\frac{1}{3}\right)$.
(b) Prove that the two lines whose direction cosines are connected by the two relations $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0$ and $\mathrm{ul}^{2}+\mathrm{vm}^{2}+\mathrm{wn}^{2}=0$ are parallel if $\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{\omega}=0$.
9. (a) A variable plane is a constant distance p from the origin and meets the axes in A, B and C. Show that the locus of the centroid of the tetrahedron OABC is $\mathrm{x}^{-2}+\mathrm{y}^{-2}+\mathrm{z}^{-2}=16 \mathrm{p}^{-2}$.
(b) Find the equation of the plane which passes through the points $(1,0,1)$ and $(2,-1,1)$ and is parallel to the line $\frac{x-1}{2}=\frac{y-2}{-2}=\frac{z+1}{3}$.
10. (a) Find the shortest distance between the two straight lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x}{2}=\frac{y-5}{3}=\frac{z+1}{4}$.

